Human iPSC-Derived Cerebral Organoids Model Cellular Features of Lissencephaly and Reveal Prolonged Mitosis of Outer Radial Glia.

[1]  CONTACT FOR REAGENT AND RESOURCE SHARING , 2018 .

[2]  Tomasz J. Nowakowski,et al.  Transformation of the Radial Glia Scaffold Demarcates Two Stages of Human Cerebral Cortex Development , 2016, Neuron.

[3]  David W. Nauen,et al.  Brain-Region-Specific Organoids Using Mini-bioreactors for Modeling ZIKV Exposure , 2016, Cell.

[4]  Alex A. Pollen,et al.  Expression Analysis Highlights AXL as a Candidate Zika Virus Entry Receptor in Neural Stem Cells. , 2016, Cell stem cell.

[5]  Peng Jin,et al.  Zika Virus Infects Human Cortical Neural Progenitors and Attenuates Their Growth. , 2016, Cell stem cell.

[6]  Amadou Alpha Sall,et al.  Zika virus and microcephaly: why is this situation a PHEIC? , 2016, The Lancet.

[7]  Marko Kolenc,et al.  Zika Virus Associated with Microcephaly. , 2016, The New England journal of medicine.

[8]  L. Schuler‐Faccini,et al.  Possible Association Between Zika Virus Infection and Microcephaly - Brazil, 2015. , 2016, MMWR. Morbidity and mortality weekly report.

[9]  E. Salmon,et al.  Prolonged Mitosis of Neural Progenitors Alters Cell Fate in the Developing Brain , 2016, Neuron.

[10]  G. Malinger,et al.  Zika virus intrauterine infection causes fetal brain abnormality and microcephaly: tip of the iceberg? , 2016, Ultrasound in obstetrics & gynecology : the official journal of the International Society of Ultrasound in Obstetrics and Gynecology.

[11]  A. Ross Possible association between Zika virus infection and microcephaly , 2016 .

[12]  Madeline A. Lancaster,et al.  Human cerebral organoids recapitulate gene expression programs of fetal neocortex development , 2015, Proceedings of the National Academy of Sciences.

[13]  A. Kriegstein,et al.  Neuronal Migration Dynamics in the Developing Ferret Cortex , 2015, The Journal of Neuroscience.

[14]  Alex A. Pollen,et al.  Molecular Identity of Human Outer Radial Glia during Cortical Development , 2015, Cell.

[15]  D. Missé,et al.  Biology of Zika Virus Infection in Human Skin Cells , 2015, Journal of Virology.

[16]  Wieland B Huttner,et al.  The cell biology of neurogenesis: toward an understanding of the development and evolution of the neocortex. , 2014, Annual review of cell and developmental biology.

[17]  C. Walsh,et al.  The diverse genetic landscape of neurodevelopmental disorders. , 2014, Annual review of genomics and human genetics.

[18]  A. Kriegstein,et al.  Control of outer radial glial stem cell mitosis in the human brain. , 2014, Cell Reports.

[19]  Magdalena Götz,et al.  Role of radial glial cells in cerebral cortex folding , 2014, Current Opinion in Neurobiology.

[20]  W. Dobyns,et al.  Malformations of cortical development: clinical features and genetic causes , 2014, The Lancet Neurology.

[21]  Wieland B Huttner,et al.  Neural progenitors, neurogenesis and the evolution of the neocortex , 2014, Development.

[22]  C. Fallet-Bianco,et al.  Cytomegalovirus-induced brain malformations in fetuses. , 2014, Journal of neuropathology and experimental neurology.

[23]  A. Wynshaw-Boris,et al.  LIS1 controls mitosis and mitotic spindle organization via the LIS1-NDEL1-dynein complex. , 2014, Human molecular genetics.

[24]  A. Kriegstein,et al.  Cell-autonomous correction of ring chromosomes in human induced pluripotent stem cells , 2014, Nature.

[25]  M. Eiraku,et al.  Self-organization of axial polarity, inside-out layer pattern, and species-specific progenitor dynamics in human ES cell–derived neocortex , 2013, Proceedings of the National Academy of Sciences.

[26]  Henry Kennedy,et al.  Precursor Diversity and Complexity of Lineage Relationships in the Outer Subventricular Zone of the Primate , 2013, Neuron.

[27]  Madeline A. Lancaster,et al.  Cerebral organoids model human brain development and microcephaly , 2013, Nature.

[28]  J. Knoblich,et al.  The Phosphatase PP4c Controls Spindle Orientation to Maintain Proliferative Symmetric Divisions in the Developing Neocortex , 2013, Neuron.

[29]  Jason S. Park,et al.  A robust method to derive functional neural crest cells from human pluripotent stem cells. , 2013, American journal of stem cells.

[30]  Magdalena Götz,et al.  Trnp1 Regulates Expansion and Folding of the Mammalian Cerebral Cortex by Control of Radial Glial Fate , 2013, Cell.

[31]  A. Kriegstein,et al.  Mitotic spindle orientation predicts outer radial glial cell generation in human neocortex , 2013, Nature Communications.

[32]  T. Lazzarotto,et al.  Neuroimaging in CMV congenital infected neonates: how and when. , 2012, Early human development.

[33]  Peter Kirwan,et al.  Human cerebral cortex development from pluripotent stem cells to functional excitatory synapses , 2012, Nature Neuroscience.

[34]  Tarik F Haydar,et al.  The (not necessarily) convoluted role of basal radial glia in cortical neurogenesis. , 2012, Cerebral cortex.

[35]  D. Price,et al.  The role of Pax6 in forebrain development , 2011, Developmental neurobiology.

[36]  A. Kriegstein,et al.  Development and Evolution of the Human Neocortex , 2011, Cell.

[37]  M. A. García-Cabezas,et al.  A role for intermediate radial glia in the tangential expansion of the mammalian cerebral cortex. , 2011, Cerebral cortex.

[38]  Yasuko Matsumura,et al.  A more efficient method to generate integration-free human iPS cells , 2011, Nature Methods.

[39]  A. Kriegstein,et al.  A new subtype of progenitor cell in the mouse embryonic neocortex , 2011, Nature Neuroscience.

[40]  F. Matsuzaki,et al.  Oblique Radial Glial Divisions in the Developing Mouse Neocortex Induce Self-Renewing Progenitors outside the Germinal Zone That Resemble Primate Outer Subventricular Zone Progenitors , 2011, The Journal of Neuroscience.

[41]  T. Akashi,et al.  Neocortical layer formation of human developing brains and lissencephalies: consideration of layer-specific marker expression. , 2011, Cerebral cortex.

[42]  W. Huttner,et al.  Cortical progenitor expansion, self-renewal and neurogenesis—a polarized perspective , 2011, Current Opinion in Neurobiology.

[43]  Terry L. Jernigan,et al.  The Basics of Brain Development , 2010, Neuropsychology Review.

[44]  J. Fish,et al.  OSVZ progenitors of human and ferret neocortex are epithelial-like and expand by integrin signaling , 2010, Nature Neuroscience.

[45]  A. Kriegstein,et al.  Neurogenic radial glia in the outer subventricular zone of human neocortex , 2010, Nature.

[46]  C. Walsh,et al.  The exon junction complex component Magoh controls brain size by regulating neural stem cell division , 2010, Nature Neuroscience.

[47]  A. Wynshaw-Boris,et al.  Novel Embryonic Neuronal Migration and Proliferation Defects in Dcx Mutant Mice Are Exacerbated by Lis1 Reduction , 2010, The Journal of Neuroscience.

[48]  A. Wynshaw-Boris,et al.  Distinct Dose-Dependent Cortical Neuronal Migration and Neurite Extension Defects in Lis1 and Ndel1 Mutant Mice , 2009, The Journal of Neuroscience.

[49]  Z. Ou,et al.  Microdeletions including YWHAE in the Miller–Dieker syndrome region on chromosome 17p13.3 result in facial dysmorphisms, growth restriction, and cognitive impairment , 2009, Journal of Medical Genetics.

[50]  Yoshiki Sasai,et al.  Self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals. , 2008, Cell stem cell.

[51]  Pierre Vanderhaeghen,et al.  An intrinsic mechanism of corticogenesis from embryonic stem cells , 2008, Nature.

[52]  C. Walsh,et al.  Lis1–Nde1-dependent neuronal fate control determines cerebral cortical size and lamination , 2008, Human molecular genetics.

[53]  A. Wynshaw-Boris,et al.  Neuroepithelial Stem Cell Proliferation Requires LIS1 for Precise Spindle Orientation and Symmetric Division , 2008, Cell.

[54]  S. Mcconnell,et al.  The determination of projection neuron identity in the developing cerebral cortex , 2008, Current Opinion in Neurobiology.

[55]  George Q. Daley,et al.  Reprogramming of human somatic cells to pluripotency with defined factors , 2008, Nature.

[56]  B. Thiers Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors , 2008 .

[57]  Shulan Tian,et al.  Induced Pluripotent Stem Cell Lines Derived from Human Somatic Cells , 2007, Science.

[58]  T. Ichisaka,et al.  Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors , 2007, Cell.

[59]  T. Graf Faculty Opinions recommendation of Induction of pluripotent stem cells from adult human fibroblasts by defined factors. , 2007 .

[60]  M. Götz,et al.  The cell biology of neurogenesis , 2006, International Journal of Developmental Neuroscience.

[61]  Wieland B Huttner,et al.  Aspm specifically maintains symmetric proliferative divisions of neuroepithelial cells , 2006, Proceedings of the National Academy of Sciences.

[62]  Robert F. Hevner,et al.  Transcription factors in glutamatergic neurogenesis: Conserved programs in neocortex, cerebellum, and adult hippocampus , 2006, Neuroscience Research.

[63]  J. Corbo,et al.  Impaired proliferation and migration in human Miller‐Dieker neural precursors , 2006, Annals of neurology.

[64]  Daniel R. O’Leary,et al.  Birth Outcomes Following West Nile Virus Infection of Pregnant Women in the United States: 2003-2004 , 2006, Pediatrics.

[65]  C. Walsh,et al.  Neocortical neuronal arrangement in Miller Dieker syndrome , 2006, Acta Neuropathologica.

[66]  P. Arlotta,et al.  Fezl Is Required for the Birth and Specification of Corticospinal Motor Neurons , 2005, Neuron.

[67]  H. Kennedy,et al.  G1 Phase Regulation, Area-Specific Cell Cycle Control, and Cytoarchitectonics in the Primate Cortex , 2005, Neuron.

[68]  L. Tsai,et al.  Ndel1 Operates in a Common Pathway with LIS1 and Cytoplasmic Dynein to Regulate Cortical Neuronal Positioning , 2004, Neuron.

[69]  A. Wynshaw-Boris,et al.  Lis1 and doublecortin function with dynein to mediate coupling of the nucleus to the centrosome in neuronal migration , 2004, The Journal of cell biology.

[70]  D. Ledbetter,et al.  14-3-3ε is important for neuronal migration by binding to NUDEL: a molecular explanation for Miller–Dieker syndrome , 2003, Nature Genetics.

[71]  W. Dobyns,et al.  Lissencephaly and the molecular basis of neuronal migration. , 2003, Human molecular genetics.

[72]  D. Ledbetter,et al.  Refinement of a 400-kb critical region allows genotypic differentiation between isolated lissencephaly, Miller-Dieker syndrome, and other phenotypes secondary to deletions of 17p13.3. , 2003, American journal of human genetics.

[73]  A. Wynshaw-Boris,et al.  Multiple Dose-Dependent Effects of Lis1 on Cerebral Cortical Development , 2003, The Journal of Neuroscience.

[74]  Henry Kennedy,et al.  Unique morphological features of the proliferative zones and postmitotic compartments of the neural epithelium giving rise to striate and extrastriate cortex in the monkey. , 2002, Cerebral cortex.

[75]  R. Vallee,et al.  A role for the lissencephaly gene LIS1 in mitosis and cytoplasmic dynein function , 2000, Nature Cell Biology.

[76]  L. Tsai,et al.  Regulation of cytoplasmic dynein behaviour and microtubule organization by mammalian Lis1 , 2000, Nature Cell Biology.

[77]  D. Ledbetter,et al.  Fluorescence in situ hybridization analysis with LIS1 specific probes reveals a high deletion mutation rate in isolated lissencephaly sequence , 1998, Genetics in Medicine.

[78]  D. Ledbetter,et al.  Graded reduction of Pafah1b1 (Lis1) activity results in neuronal migration defects and early embryonic lethality , 1998, Nature Genetics.

[79]  D. Ledbetter,et al.  Point mutations and an intragenic deletion in LIS1, the lissencephaly causative gene in isolated lissencephaly sequence and Miller-Dieker syndrome. , 1997, Human molecular genetics.

[80]  D. Ledbetter,et al.  A revision of the lissencephaly and Miller-Dieker syndrome critical regions in chromosome 17p13.3. , 1997, Human molecular genetics.

[81]  A. Schleicher,et al.  The ontogeny of human gyrification. , 1995, Cerebral cortex.

[82]  H. Arai,et al.  Miller-Dicker lissencephaly gene encodes a subunit of brain platelet-activating factor acetylhydrolase , 1994, Nature.

[83]  H. Arai,et al.  Miller-Dieker lissencephaly gene encodes a subunit of brain platelet-activating factor , 1994, Nature.

[84]  M. Ballesteros,et al.  MR imaging of the developing human brain. Part 2. Postnatal development. , 1993, Radiographics : a review publication of the Radiological Society of North America, Inc.

[85]  D. Ledbetter,et al.  Isolation of a Miller-Dieker lissencephaly gene containing G protein beta-subunit-like repeats. , 1993, Nature.

[86]  M. Ballesteros,et al.  MR imaging of the developing human brain. Part 1. Prenatal development. , 1993, Radiographics : a review publication of the Radiological Society of North America, Inc.

[87]  D. Ledbetter,et al.  Microdeletions of chromosome 17p13 as a cause of isolated lissencephaly. , 1992, American journal of human genetics.

[88]  A. Barkovich,et al.  The spectrum of lissencephaly: Report of ten patients analyzed by magnetic resonance imaging , 1991, Annals of neurology.

[89]  D. Ledbetter,et al.  Clinical and molecular diagnosis of Miller-Dieker syndrome. , 1991, American journal of human genetics.

[90]  R Kikinis,et al.  Developmental stages of human brain: an MR study. , 1988, Journal of computer assisted tomography.

[91]  D. Ledbetter,et al.  Miller-Dieker syndrome: lissencephaly and monosomy 17p. , 1983, The Journal of pediatrics.

[92]  F. Gilles,et al.  Gyral development of the human brain , 1977, Transactions of the American Neurological Association.

[93]  P. Rakić,et al.  Neuronal migration, with special reference to developing human brain: a review. , 1973, Brain research.