On the hyperbolicity of bipartite graphs and intersection graphs

Hyperbolicity is a measure of the tree-likeness of a graph from a metric perspective. Recently , it has been used to classify complex networks depending on their underlying geometry. Motivated by a better understanding of the structure of graphs with bounded hyperbolicity, we here investigate on the hyperbolicity of bipartite graphs. More precisely, given a bipartite graph B = (V0 ∪ V1 , E) we prove it is enough to consider any one side Vi of the bipartition of B to obtain a close approximate of its hyperbolicity δ(B) — up to an additive constant 2. We obtain from this result the sharp bounds δ(G) − 1 ≤ δ(L(G)) ≤ δ(G) + 1 and δ(G) − 1 ≤ δ(K(G)) ≤ δ(G) + 1 for every graph G, with L(G) and K(G) being respectively the line graph and the clique graph of G. Finally, promising extensions of our techniques to a broader class of intersection graphs are discussed and illustrated with the case of the biclique graph BK(G), for which we prove (δ(G) − 3)/2 ≤ δ(BK(G)) ≤ (δ(G) + 3)/2.

[1]  Jayme Luiz Szwarcfiter,et al.  Biclique graphs and biclique matrices , 2010 .

[2]  David Coudert,et al.  On Computing the Hyperbolicity of Real-World Graphs , 2015, ESA.

[3]  David Coudert,et al.  Data center interconnection networks are not hyperbolic , 2016, Theor. Comput. Sci..

[4]  M. Soto,et al.  Quelques proprietes topologiques des graphes et applications a Internet et aux reseaux , 2011 .

[5]  David Coudert,et al.  Applying clique-decomposition for computing Gromov hyperbolicity , 2017, Theor. Comput. Sci..

[6]  Hans-Jürgen Bandelt,et al.  1-Hyperbolic Graphs , 2003, SIAM J. Discret. Math..

[7]  Jay Bagga Old and new generalizations of line graphs , 2004, Int. J. Math. Math. Sci..

[8]  William Sean Kennedy,et al.  On the Hyperbolicity of Large-Scale Networks , 2013, ArXiv.

[9]  Hans-Jürgen Bandelt,et al.  Powers of distance-hereditary graphs , 1995, Discret. Math..

[10]  David Coudert,et al.  On Computing the Gromov Hyperbolicity , 2015, ACM J. Exp. Algorithmics.

[11]  David Coudert,et al.  To Approximate Treewidth, Use Treelength! , 2016, SIAM J. Discret. Math..

[12]  Gary Chartrand,et al.  Total Graphs and Traversability , 1966 .

[13]  A. O. Houcine On hyperbolic groups , 2006 .

[14]  Reinhard Diestel,et al.  Graph Theory , 1997 .

[15]  Jose Maria Sigarreta,et al.  New inequalities on the hyperbolicity constant of line graphs , 2014, Ars Comb..

[16]  J. Szwarcfiter A Survey on Clique Graphs , 2003 .

[17]  R. Hamelink A partial characterization of clique graphs , 1968 .

[18]  Edward Howorka,et al.  On metric properties of certain clique graphs , 1979, J. Comb. Theory, Ser. B.

[19]  Hans-Jürgen Bandelt,et al.  Distance-hereditary graphs , 1986, J. Comb. Theory B.

[20]  Erich Prisner,et al.  A common generalization of line graphs and clique graphs , 1994, J. Graph Theory.

[21]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[22]  H. Whitney Congruent Graphs and the Connectivity of Graphs , 1932 .

[23]  Jose Maria Sigarreta,et al.  On the Hyperbolicity Constant of Line Graphs , 2011, Electron. J. Comb..

[24]  David Coudert,et al.  Recognition of C4-Free and 1/2-Hyperbolic Graphs , 2014, SIAM J. Discret. Math..

[25]  Feodor F. Dragan,et al.  Diameters, centers, and approximating trees of delta-hyperbolicgeodesic spaces and graphs , 2008, SCG '08.

[26]  Matthieu Latapy,et al.  Fast computation of empirically tight bounds for the diameter of massive graphs , 2009, JEAL.

[27]  Terry A. McKee,et al.  Edge-clique graphs , 1991, Graphs Comb..

[28]  J. A. Bondy,et al.  Graph Theory with Applications , 1978 .

[29]  Álvaro Martínez-Pérez,et al.  Chordality Properties and Hyperbolicity on Graphs , 2015, Electron. J. Comb..

[30]  Yaokun Wu,et al.  Hyperbolicity and Chordality of a Graph , 2011, Electron. J. Comb..