Real-time fire detection system based on dynamic time warping of multichannel sensor networks

[1]  Bart De Moor,et al.  A Time Series Distance Measure for Efficient Clustering of Input/Output Signals by Their Underlying Dynamics , 2017, IEEE Control Systems Letters.

[2]  Shin-Juh Chen,et al.  Fire detection using smoke and gas sensors , 2007 .

[3]  Y. R. Sivathanu,et al.  Fire detection using time series analysis of source temperatures , 1997 .

[4]  P. Vieu,et al.  Nonparametric Functional Data Analysis: Theory and Practice (Springer Series in Statistics) , 2006 .

[5]  Michel Verleysen,et al.  The Curse of Dimensionality in Data Mining and Time Series Prediction , 2005, IWANN.

[6]  Christophe Croux,et al.  High breakdown estimators for principal components: the projection-pursuit approach revisited , 2005 .

[7]  Daniel T. Gottuk,et al.  Advanced Fire Detection Using Multi-Signature Alarm Algorithms , 1999 .

[8]  ByoungChul Ko,et al.  Early fire detection algorithm based on irregular patterns of flames and hierarchical Bayesian Networks , 2010 .

[9]  Eamonn J. Keogh,et al.  Exact indexing of dynamic time warping , 2002, Knowledge and Information Systems.

[10]  Laleh Najafizadeh,et al.  Capturing dynamic patterns of task-based functional connectivity with EEG , 2013, NeuroImage.

[11]  Olufemi A. Omitaomu,et al.  Weighted dynamic time warping for time series classification , 2011, Pattern Recognit..

[12]  Jonathan Goldstein,et al.  When Is ''Nearest Neighbor'' Meaningful? , 1999, ICDT.

[13]  James A. Milke,et al.  Advanced fire detection algorithms using data from the home smoke detector project , 2005 .

[14]  Wee Ser,et al.  Probabilistic neural-network structure determination for pattern classification , 2000, IEEE Trans. Neural Networks Learn. Syst..

[15]  Ya-Ju Fan,et al.  On the Time Series $K$-Nearest Neighbor Classification of Abnormal Brain Activity , 2007, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.

[16]  Hakil Kim,et al.  Fast fire flame detection in surveillance video using logistic regression and temporal smoothing , 2016 .

[17]  William P. Marnane,et al.  Exploring temporal information in neonatal seizures using a dynamic time warping based SVM kernel , 2017, Comput. Biol. Medicine.

[18]  Donald F. Specht,et al.  Probabilistic neural networks , 1990, Neural Networks.

[19]  Fotis Foukalas,et al.  Wireless Communication Technologies for Safe Cooperative Cyber Physical Systems , 2018, Sensors.

[20]  Yan Wang,et al.  Intelligent Monitoring System for Home Based on FRBF Neural Network , 2015 .

[21]  James A. Milke,et al.  Using multivariate statistical methods to detect fires , 1996 .

[22]  Ana Solórzano,et al.  Chemical Sensor Systems and Associated Algorithms for Fire Detection: A Review , 2018, Sensors.

[23]  Seong-Jun Kim,et al.  Automatic Identification of Defect Patterns in Semiconductor Wafer Maps Using Spatial Correlogram and Dynamic Time Warping , 2008, IEEE Transactions on Semiconductor Manufacturing.

[24]  R. Jiji,et al.  Multivariate statistical process control for continuous monitoring of networked early warning fire detection (EWFD) systems , 2003 .

[25]  Siuming Lo,et al.  Influence of Feature Extraction Duration and Step Size on ANN based Multisensor Fire Detection Performance , 2013 .

[26]  Mohan Kumar,et al.  Using dynamic time warping for online temporal fusion in multisensor systems , 2008, Inf. Fusion.

[27]  Germain Forestier,et al.  Classification of surgical processes using dynamic time warping , 2012, J. Biomed. Informatics.

[28]  Hugo Gamboa,et al.  Time Alignment Measurement for Time Series , 2018, Pattern Recognit..

[29]  S. Chiba,et al.  Dynamic programming algorithm optimization for spoken word recognition , 1978 .

[30]  David E. Johnson,et al.  Maximizing Text-Mining Performance , 1999 .