Numerical Simulation of Waves in Periodic Structures

In this work we improve and extend a technique named recursive doubling procedure developed by Yuan and Lu [J. Lightwave Technology 25 (2007), 3649-3656] for solving periodic array problems. It turns out that when the periodic array contains an infinite number of periodic cells, our method gives a fast evaluation of the exact boundary Robin-to-Robin mapping if the wave number is complex, or real but in the stop bands. This technique is also used to solve the time-dependent Schrödinger equation in both one and two dimensions, when the periodic potential functions have some local defects. AMS subject classifications: 35B27, 65M99, 35Q60, 35J05 PACS: 02.70.Bf, 31.15.-p, 42.82.Et, 85.35.-p, 85.35.Be

[1]  Hermann A. Haus,et al.  A variational coupled-mode theory for periodic waveguides , 1995 .

[2]  D. Griffiths,et al.  Waves in locally periodic media , 2001 .

[3]  Y. Lu,et al.  Computing Photonic Crystal Defect Modes by Dirichlet-to-Neumann Maps. , 2007, Optics express.

[4]  Sonia Fliss,et al.  Exact boundary conditions for time-harmonic wave propagation in locally perturbed periodic media , 2009 .

[5]  P. Kuchment Floquet Theory for Partial Differential Equations , 1993 .

[6]  F. M. Arscott,et al.  Periodic Differential Equations , 1963 .

[7]  A. Wacker Semiconductor superlattices: a model system for nonlinear transport , 2001, cond-mat/0107207.

[8]  P. Kuchment The mathematics of photonic crystals , 2001 .

[9]  M. Jaros,et al.  Wave Mechanics Applied to Semiconductor Heterostructures , 1991 .

[10]  O. Benson,et al.  Manipulation of Dielectric Particles Using Photonic Crystal Cavities , 2007, 2007 Conference on Lasers and Electro-Optics (CLEO).

[11]  V. Oleinik,et al.  A Dirichlet-to-Neumann map approach to resonance gaps and bands of periodic networks , 2005 .

[12]  Ya Yan Lu,et al.  Dirichlet-to-Neumann map method for second-harmonic generation in piecewise uniform waveguides , 2007 .

[13]  Christophe Besse,et al.  A Review of Transparent and Artificial Boundary Conditions Techniques for Linear and Nonlinear Schrödinger Equations , 2008 .

[14]  Sonia Fliss,et al.  Exact boundary conditions for periodic waveguides containing a local perturbation , 2006 .

[15]  Jerome K. Butler,et al.  Floquet Multipliers of Periodic Waveguides via Dirichlet-to-Neumann Maps , 2000 .

[16]  Ya Yan Lu,et al.  An Efficient Bidirectional Propagation Method Based on Dirichlet-to-Neumann Maps , 2006, IEEE Photonics Technology Letters.

[17]  Johannes Tausch,et al.  Efficient analysis of periodic dielectric waveguides using Dirichlet-to-Neumann maps. , 2002, Journal of the Optical Society of America. A, Optics, image science, and vision.

[18]  A Bidirectional Beam Propagation Method for Periodic Waveguides , 2001 .

[19]  Ya Yan Lu,et al.  A Recursive-Doubling Dirichlet-to-Neumann-Map Method for Periodic Waveguides , 2007, Journal of Lightwave Technology.

[20]  Sailing He,et al.  Surface Plasmon Bragg Gratings Formed in Metal-Insulator-Metal Waveguides , 2007, IEEE Photonics Technology Letters.

[21]  L. Greengard,et al.  Nonreflecting Boundary Conditions for the Time-Dependent Wave Equation , 2002 .

[22]  R. Pregla,et al.  Efficient analysis of periodic structures , 1998 .

[23]  T. Hagstrom Radiation boundary conditions for the numerical simulation of waves , 1999, Acta Numerica.

[24]  S. Tsynkov Numerical solution of problems on unbounded domains. a review , 1998 .

[25]  Sergey I. Bozhevolnyi,et al.  Theoretical analysis of ridge gratings for long-range surface plasmon polaritons , 2006 .

[26]  Steven G. Johnson,et al.  Photonic Crystals: The Road from Theory to Practice , 2001 .

[27]  R. Leis,et al.  Initial Boundary Value Problems in Mathematical Physics , 1986 .

[28]  Chunxiong Zheng,et al.  Exact artificial boundary conditions for problems with periodic structures , 2008, J. Comput. Phys..

[29]  Ya Yan Lu,et al.  Modeling photonic crystals by boundary integral equations and Dirichlet-to-Neumann maps , 2008, J. Comput. Phys..

[30]  David R. Smith,et al.  Metamaterials and Negative Refractive Index , 2004, Science.

[31]  D. Givoli Non-reflecting boundary conditions , 1991 .

[32]  I. A. Semenikhin,et al.  Plasma waves in two-dimensional electron channels: Propagation and trapped modes , 2007 .

[33]  Houde Han The Artificial Boundary Method—Numerical Solutions of Partial Differential Equations on Unbounded Domains , 2006 .

[34]  Roel Baets,et al.  Optical modelling of photonic crystals and VCSELs using eigenmode expansion and perfectly matched layers , 2001 .