On-Chip Selective Capture and Detection of Magnetic Fingerprints of Malaria

The development of innovative diagnostic tests is fundamental in the route towards malaria eradication. Here, we discuss the sorting capabilities of an innovative test for malaria which allows the quantitative and rapid detection of all malaria species. The physical concept of the test exploits the paramagnetic property of infected erythrocytes and hemozoin crystals, the magnetic fingerprints of malaria common to all species, which allows them to undergo a selective magnetophoretic separation driven by a magnetic field gradient in competition with gravity. Upon separation, corpuscles concentrate at the surface of a silicon microchip where interdigitated electrodes are placed in close proximity to magnetic concentrators. The impedance variation proportional to the amount of attracted particles is then measured. The capability of our test to perform the selective detection of infected erythrocytes and hemozoin crystals has been tested by means of capture experiments on treated bovine red blood cells, mimicking the behavior of malaria-infected ones, and suspensions of synthetic hemozoin crystals. Different configuration angles of the chip with respect to gravity force and different thicknesses of the microfluidic chamber containing the blood sample have been investigated experimentally and by multiphysics simulations. In the paper, we describe the optimum conditions leading to maximum sensitivity and specificity of the test.

[1]  I. Khmelinskii,et al.  Superparamagnetic Properties of Hemozoin , 2016, Scientific Reports.

[2]  S. Xiao,et al.  Schistosoma hemozoin and its possible roles. , 2017, International journal for parasitology.

[3]  I. González,et al.  A Systematic Review: Performance of Rapid Diagnostic Tests for the Detection of Plasmodium knowlesi, Plasmodium malariae, and Plasmodium ovale Monoinfections in Human Blood , 2018, The Journal of infectious diseases.

[4]  A. Butykai,et al.  Malaria pigment crystals as magnetic micro-rotors: key for high-sensitivity diagnosis , 2013, Scientific reports.

[5]  E. Hempelmann Hemozoin Biocrystallization in Plasmodium falciparum and the antimalarial activity of crystallization inhibitors , 2007, Parasitology Research.

[6]  A. Chou,et al.  Intracellular ferriprotoporphyrin IX is a lytic agent. , 1983, Blood.

[7]  Peter W. Stephens,et al.  The structure of malaria pigment β-haematin , 2000, Nature.

[8]  M. Monticelli,et al.  Electrical and magnetic properties of hemozoin nanocrystals , 2018, Applied Physics Letters.

[9]  Carmenza Spadafora,et al.  Malarial hemozoin: from target to tool. , 2014, Biochimica et biophysica acta.

[10]  M. A. Diallo,et al.  Evaluation of the Illumigene Malaria LAMP: A Robust Molecular Diagnostic Tool for Malaria Parasites , 2016, Scientific Reports.

[11]  M. Grobusch,et al.  Automated haematology analysis to diagnose malaria , 2010, Malaria Journal.

[12]  P. Adepoju RTS,S malaria vaccine pilots in three African countries , 2019, The Lancet.

[13]  Alongkorn Pimpin,et al.  The development of malaria diagnostic techniques: a review of the approaches with focus on dielectrophoretic and magnetophoretic methods , 2016, Malaria Journal.

[14]  D. N. Carss,et al.  Meeting report , 1975, Appetite.

[15]  D. Sullivan Theories on malarial pigment formation and quinoline action. , 2002, International journal for parasitology.

[16]  A. Einstein Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen [AdP 17, 549 (1905)] , 2005, Annalen der Physik.

[17]  Clemens F. Kaminski,et al.  FRET Imaging of Hemoglobin Concentration in Plasmodium falciparum-Infected Red Cells , 2008, PloS one.

[18]  N. Bruns,et al.  Hemozoin-catalyzed precipitation polymerization as an assay for malaria diagnosis , 2019, Nature Communications.

[19]  E. P. Furlania Analysis of particle transport in a magnetophoretic microsystem , 2006 .

[20]  C. Newbold,et al.  Sequestration in Plasmodium falciparum malaria: sticky cells and sticky problems. , 1990, Parasitology Today.

[21]  P. Rosenthal,et al.  Hemoglobin catabolism and iron utilization by malaria parasites. , 1996, Molecular and biochemical parasitology.

[22]  D. Sullivan,et al.  Rapid detection of malaria infection in vivo by laser desorption mass spectrometry. , 2004, The American journal of tropical medicine and hygiene.

[23]  Garth J. Williams,et al.  Nanocrystallography measurements of early stage synthetic malaria pigment , 2017, Journal of applied crystallography.

[24]  C. D. Fitch,et al.  The state of ferriprotoporphyrin IX in malaria pigment. , 1987, The Journal of biological chemistry.

[25]  Sehyun Shin,et al.  Magnetic separation of malaria-infected red blood cells in various developmental stages. , 2013, Analytical chemistry.

[26]  A. Bruno Frazier,et al.  Continuous magnetophoretic separation of blood cells in microdevice format , 2004 .

[27]  Dmitri O. Lapotko,et al.  Hemozoin-generated vapor nanobubbles for transdermal reagent- and needle-free detection of malaria , 2013, Proceedings of the National Academy of Sciences.

[28]  Maciej Zborowski,et al.  Hemoglobin degradation in malaria‐infected erythrocytes determined from live cell magnetophoresis , 2006, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[29]  M. Rebelo,et al.  Efficient monitoring of the blood-stage infection in a malaria rodent model by the rotating-crystal magneto-optical method , 2015, Scientific Reports.

[30]  D. Newman,et al.  The In Vivo Diagnosis of Malaria: Feasibility Study Into a Magneto-Optic Fingertip Probe , 2010, IEEE Journal of Selected Topics in Quantum Electronics.

[31]  T. S. St. Pierre,et al.  Magnetic susceptibility of iron in malaria-infected red blood cells. , 2009, Biochimica et biophysica acta.

[32]  A. B. Frazier,et al.  Paramagnetic capture mode magnetophoretic microseparator for high efficiency blood cell separations. , 2006, Lab on a chip.