Methods for defining distinct bioenergetic profiles in platelets, lymphocytes, monocytes, and neutrophils, and the oxidative burst from human blood

[1]  J. Lancaster,et al.  Integration of cellular bioenergetics with mitochondrial quality control and autophagy , 2012, Biological chemistry.

[2]  G. Fiskum,et al.  Novel Mitochondrial Targets for Neuroprotection , 2012, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[3]  W. Sivitz,et al.  Endothelial Cell and Platelet Bioenergetics: Effect of Glucose and Nutrient Composition , 2012, PloS one.

[4]  F. Sotgia,et al.  Warburg meets autophagy: cancer-associated fibroblasts accelerate tumor growth and metastasis via oxidative stress, mitophagy, and aerobic glycolysis. , 2012, Antioxidants & redox signaling.

[5]  K. Lim,et al.  Mitochondrial dynamics and Parkinson's disease: focus on parkin. , 2012, Antioxidants & redox signaling.

[6]  D. Green,et al.  Mitochondrial dysfunction in ataxia-telangiectasia. , 2012, Blood.

[7]  G. V. D. van der Windt,et al.  Mitochondrial respiratory capacity is a critical regulator of CD8+ T cell memory development. , 2012, Immunity.

[8]  A. Landar,et al.  Assessing bioenergetic function in response to oxidative stress by metabolic profiling. , 2011, Free radical biology & medicine.

[9]  A. Aponte,et al.  Platelet Mitochondrial Dysfunction is Evident in Type 2 Diabetes in Association with Modifications of Mitochondrial Anti-Oxidant Stress Proteins , 2011, Experimental and Clinical Endocrinology & Diabetes (Barth).

[10]  R. Flores,et al.  Inflammatory Cytokine Profiles During Exercise in Obese, Diabetic, and Healthy Children , 2011, Journal of clinical research in pediatric endocrinology.

[11]  N. Jhala,et al.  Mitochondria‐targeted ubiquinone (MitoQ) decreases ethanol‐dependent micro and macro hepatosteatosis , 2011, Hepatology.

[12]  F. Bozza,et al.  Bioenergetic failure of human peripheral blood monocytes in patients with septic shock is mediated by reduced F1Fo adenosine-5′-triphosphate synthase activity* , 2011, Critical care medicine.

[13]  M. Murphy,et al.  Prevention of diabetic nephropathy in Ins2+/−AkitaJ mice by the mitochondria-targeted therapy MitoQ , 2010, The Biochemical journal.

[14]  C. Movitz,et al.  Leukocyte oxygen radical production determines disease severity in the recurrent Guillain-Barré syndrome , 2010, Journal of Inflammation.

[15]  D. Weihrauch,et al.  Altered mitochondrial membrane potential, mass, and morphology in the mononuclear cells of humans with type 2 diabetes. , 2010, Translational research : the journal of laboratory and clinical medicine.

[16]  Robin A. J. Smith,et al.  Animal and human studies with the mitochondria‐targeted antioxidant MitoQ , 2010, Annals of the New York Academy of Sciences.

[17]  J. Gal,et al.  Mitochondrial dysfunction is a converging point of multiple pathological pathways in amyotrophic lateral sclerosis. , 2010, Journal of Alzheimer's disease : JAD.

[18]  M. Sjöström,et al.  The Human Visceral Fat Depot Has a Unique Inflammatory Profile , 2010, Obesity.

[19]  P. Navas,et al.  Mitochondrial dysfunction and mitophagy activation in blood mononuclear cells of fibromyalgia patients: implications in the pathogenesis of the disease , 2010, Arthritis research & therapy.

[20]  A. Shimatsu,et al.  Unbalanced M1/M2 Phenotype of Peripheral Blood Monocytes in Obese Diabetic Patients , 2010, Diabetes Care.

[21]  J. Chatham,et al.  Importance of the bioenergetic reserve capacity in response to cardiomyocyte stress induced by 4-hydroxynonenal. , 2009, The Biochemical journal.

[22]  M. Slattery,et al.  Convergence of Hormones, Inflammation, and Energy-Related Factors: A Novel Pathway of Cancer Etiology , 2009, Cancer Prevention Research.

[23]  M. Mancuso,et al.  Mitochondria, Cognitive Impairment, and Alzheimer's Disease , 2009, International journal of Alzheimer's disease.

[24]  A. Baranova,et al.  Expression of Cytokine Signaling Genes in Morbidly Obese Patients with Non-Alcoholic Steatohepatitis and Hepatic Fibrosis , 2009, Obesity surgery.

[25]  Qingmei Li,et al.  Platelets of type 2 diabetic patients are characterized by high ATP content and low mitochondrial membrane potential , 2009, Platelets.

[26]  W. Grajek,et al.  In vitro effects of beetroot juice and chips on oxidative metabolism and apoptosis in neutrophils from obese individuals , 2009, Phytotherapy research : PTR.

[27]  E. L. Batista,et al.  Priming of neutrophil oxidative burst in diabetes requires preassembly of the NADPH oxidase , 2008, Journal of leukocyte biology.

[28]  Kaihua Guo,et al.  Effects of ageing and Alzheimer’s disease on mitochondrial function of human platelets , 2008, Experimental Gerontology.

[29]  G. Nagy,et al.  Nitric oxide, mitochondrial hyperpolarization, and T cell activation. , 2007, Free radical biology & medicine.

[30]  W. L. Hand,et al.  Increased polymorphonuclear leukocyte respiratory burst function in type 2 diabetes. , 2007, Diabetes research and clinical practice.

[31]  Shengkan Jin Autophagy, Mitochondrial Quality Control, and Oncogenesis , 2006, Autophagy.

[32]  R. Holmdahl,et al.  Enhanced autoimmunity, arthritis, and encephalomyelitis in mice with a reduced oxidative burst due to a mutation in the Ncf1 gene. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[33]  S. T. Olalla-Saad,et al.  Association of glucose‐6‐phosphate dehydrogenase deficiency and X‐linked chronic granulomatous disease in a child with anemia and recurrent infections , 2004, American journal of hematology.

[34]  C. Hedrick,et al.  Glucose Regulates Monocyte Adhesion Through Endothelial Production of Interleukin-8 , 2003, Circulation research.

[35]  B. T. Costa-Carvalho,et al.  Deficiência da glicose-6-fosfato desidrogenase com infecções de repetição: relato de caso , 2001 .

[36]  S. Nogueira,et al.  [Glucose-6-phosphate dehydrogenase deficiency with recurrent infections: case report] , 2001, Jornal de pediatria.

[37]  H. Baum,et al.  Decreased Pasteur effect in platelets of aged individuals , 2001, Mechanisms of Ageing and Development.

[38]  M. Brownlee,et al.  Hyperglycemia potentiates collagen-induced platelet activation through mitochondrial superoxide overproduction. , 2001, Diabetes.

[39]  Richard B. Johnston,et al.  Chronic Granulomatous Disease: Report on a National Registry of 368 Patients , 2000, Medicine.

[40]  M. Helbert,et al.  A simple flow cytometry assay using dihydrorhodamine for the measurement of the neutrophil respiratory burst in whole blood: comparison with the quantitative nitrobluetetrazolium test. , 1998, Journal of immunological methods.

[41]  A. Utter,et al.  Immune response to exercise training and/or energy restriction in obese women. , 1998, Medicine and science in sports and exercise.

[42]  G. Nappi,et al.  Quantitative study of mitochondrial complex I in platelets of parkinsonian patients , 1998, Movement disorders : official journal of the Movement Disorder Society.

[43]  M. L. Genova,et al.  Mitochondrial Complex I defects in aging , 1997, Molecular and Cellular Biochemistry.

[44]  A. Kesy,et al.  Microplate reader--a convenient tool in studies of blood coagulation. , 1997, Thrombosis research.

[45]  Y. Matzner Neutrophil function studies in clinical medicine. , 1987, Transfusion medicine reviews.

[46]  T. Herlin,et al.  Energy metabolism of human neutrophils during phagocytosis. , 1982, The Journal of clinical investigation.

[47]  W. Junger,et al.  Measurement of oxidative burst in neutrophils. , 2012, Methods in molecular biology.

[48]  M. D. de Leon,et al.  Reduced mitochondria cytochrome oxidase activity in adult children of mothers with Alzheimer's disease. , 2011, Journal of Alzheimer's disease : JAD.

[49]  R. Swerdlow,et al.  Mitochondrial genomic contribution to mitochondrial dysfunction in Alzheimer's disease. , 2006, Journal of Alzheimer's disease : JAD.

[50]  D. Roos,et al.  Apoptosis of neutrophils , 1996, Current opinion in hematology.

[51]  J. Korzenik,et al.  Is Crohn's disease an immunodeficiency? A hypothesis suggesting possible early events in the pathogenesis of Crohn's disease. , 2000, Digestive diseases and sciences.