Direct conductance measurement of individual metallo-DNA duplexes within single-molecule break junctions.

DNA, as the product of million years of evolution, possesses the maximal density of functionalities embedded in its framework and superior sequence-specific self-assembly properties that make it a useful scaffold for the organization of molecules into higher-order nanostructures for the development of functional nanoscale devices and materials. In this context, one major effort is to transform DNA into a conductive material that would make a significant contribution to the development of the vibrant field of DNA-based molecular electronics. It turns out that unmodified DNA lacks sufficient electrical conductance, thus making it unsuitable for application in nanoelectronics. To address this issue, a fascinating alternative solution of recent years is to exchange some or all of the Watson–Crick base pairs in DNA by metal complexes in a programmable fashion pioneered by Shionoya, Schultz, Carell, M ller, and others. The combination of DNA and functional metal complexes can introduce significant advantages for both the metals and the DNA structures, thus representing an important step for their potential application as nanomagnets, as self-assembling molecular wires, or as catalysts in chemical reactions. With a focus on DNA-based molecular electronics, it is currently urgent to unambiguously characterize the electrical conductance of these metal-containing DNA strands. Herein we demonstrate the first direct charge transport (CT) measurement of individual metallo-DNA duplexes using singlemolecule break junctions (Figure 1). These findings provide a foundation for DNA-based hybrid materials as conductive biocompatible bridges that may interface electronic circuits with biological systems.

[1]  Claude Nogues,et al.  Direct Measurements of Electrical Transport Through Single DNA Molecules of Complex Sequence , 2005 .

[2]  Jens Müller,et al.  Functional metal ions in nucleic acids. , 2010, Metallomics : integrated biometal science.

[3]  T. Carell,et al.  A highly DNA-duplex-stabilizing metal-salen base pair. , 2005, Angewandte Chemie.

[4]  Hao Yan,et al.  Designer DNA nanoarchitectures. , 2009, Biochemistry.

[5]  Xiaohong Fang,et al.  Single-molecule detection of proteins using aptamer-functionalized molecular electronic devices. , 2011, Angewandte Chemie.

[6]  E. Scheer,et al.  Direct measurement of electrical transport through G-quadruplex DNA with mechanically controllable break junction electrodes. , 2010, Angewandte Chemie.

[7]  J. Barton,et al.  Mechanisms for DNA charge transport. , 2010, Chemical reviews.

[8]  T. Carell,et al.  Antiferromagnetic coupling of stacked Cu(II)-salen complexes in DNA. , 2010, Angewandte Chemie.

[9]  Kentaro Tanaka,et al.  Synthesis of a Novel Nucleoside for Alternative DNA Base Pairing through Metal Complexation. , 1999, The Journal of organic chemistry.

[10]  M. Famulok,et al.  Building objects from nucleic acids for a nanometer world. , 2008, Biochimie.

[11]  Masayuki Endo,et al.  Chemical Approaches to DNA Nanotechnology , 2009, Chembiochem : a European journal of chemical biology.

[12]  James Hone,et al.  Covalently Bridging Gaps in Single-Walled Carbon Nanotubes with Conducting Molecules , 2006, Science.

[13]  A. Voityuk Electronic coupling mediated by stacked [Thymine-Hg-Thymine] base pairs. , 2006, The journal of physical chemistry. B.

[14]  P. Schultz,et al.  Structure of a copper-mediated base pair in DNA. , 2001, Journal of the American Chemical Society.

[15]  E. Braun,et al.  DNA-templated assembly and electrode attachment of a conducting silver wire , 1998, Nature.

[16]  Sairam S. Mallajosyula,et al.  Conformational tuning of magnetic interactions in metal-DNA complexes. , 2009, Angewandte Chemie.

[17]  Joshy Joseph,et al.  Long-distance radical cation hopping in DNA: the effect of thymine-Hg(II)-thymine base pairs. , 2007, Organic letters.

[18]  H. Sleiman,et al.  DNA modified with metal complexes: Applications in the construction of higher order metal–DNA nanostructures , 2010 .

[19]  W. Wenzel,et al.  Variable-temperature measurements of the single-molecule conductance of double-stranded DNA. , 2006, Angewandte Chemie.

[20]  Peter G. Schultz,et al.  A Novel Copper-Mediated DNA Base Pair , 2000 .

[21]  Faisal A. Aldaye,et al.  Assembling Materials with DNA as the Guide , 2008, Science.

[22]  D. Klinov,et al.  Proximity-induced superconductivity in DNA. , 2001, Science.

[23]  T. Carell,et al.  Electrontransfer through DNA and metal-containing DNA. , 2003, Organic & biomolecular chemistry.

[24]  Metal‐Ion‐Mediated Base Pairs in Nucleic Acids , 2008 .

[25]  J. Richter,et al.  Metallization of DNA , 2003 .

[26]  Kentaro Tanaka,et al.  Efficient incorporation of a copper hydroxypyridone base pair in DNA. , 2002, Journal of the American Chemical Society.

[27]  A. Marx,et al.  Direkte Messung des Stromflusses durch G-Quadruplex-DNA mithilfe von mechanisch kontrollierbaren Bruchkontaktelektroden† , 2010 .

[28]  C. Dekker,et al.  Direct measurement of electrical transport through DNA molecules , 2000, Nature.

[29]  Kentaro Tanaka,et al.  A Discrete Self-Assembled Metal Array in Artificial DNA , 2003, Science.

[30]  L. Delbaere,et al.  M-DNA: A complex between divalent metal ions and DNA which behaves as a molecular wire. , 1999, Journal of molecular biology.

[31]  Jens Müller Chemistry: Metals line up for DNA , 2006, Nature.

[32]  Cees Dekker,et al.  Insulating behavior for DNA molecules between nanoelectrodes at the 100 nm length scale , 2001 .

[33]  S. Greenfield,et al.  Distance-dependent electron transfer in DNA hairpins. , 1997, Science.

[34]  Gary Taubes,et al.  Double Helix Does Chemistry at a Distance—But How? , 1997, Science.

[35]  H. Fink,et al.  Electrical conduction through DNA molecules , 1999, Nature.

[36]  T. Carell,et al.  DNA‐Metall‐Basenpaare , 2007 .

[37]  T. Carell,et al.  Programmable self-assembly of metal ions inside artificial DNA duplexes , 2006, Nature nanotechnology.

[38]  T. Carell,et al.  Metal-salen-base-pair complexes inside DNA: complexation overrides sequence information. , 2006, Chemistry.

[39]  K. Polborn,et al.  Ein hochgradig DNA-Duplex-stabilisierendes Metall-Salen-Basenpaar† , 2005 .

[40]  Kentaro Tanaka,et al.  Discrete self-assembly of iron(III) ions inside triple-stranded artificial DNA. , 2009, Angewandte Chemie.

[41]  M. Steigerwald,et al.  Molecular electronic devices based on single-walled carbon nanotube electrodes. , 2008, Accounts of chemical research.

[42]  T. Carell,et al.  DNA--metal base pairs. , 2007, Angewandte Chemie.

[43]  Kentaro Tanaka,et al.  Programmable metal assembly on bio-inspired templates , 2007 .

[44]  Nadrian C. Seeman,et al.  An Overview of Structural DNA Nanotechnology , 2007, Molecular biotechnology.

[45]  Mitsuhiko Shionoya,et al.  Metal–base pairing in DNA , 2010 .

[46]  James Hone,et al.  Conductivity of a single DNA duplex bridging a carbon nanotube gap. , 2008, Nature nanotechnology.

[47]  Colin Nuckolls,et al.  Single-molecule devices as scaffolding for multicomponent nanostructure assembly. , 2007, Nano letters.

[48]  Yuyuan Tian,et al.  Study of single-nucleotide polymorphisms by means of electrical conductance measurements. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[49]  I. Willner,et al.  Multiplexed analysis of Hg2+ and Ag+ ions by nucleic acid functionalized CdSe/ZnS quantum dots and their use for logic gate operations. , 2009, Angewandte Chemie.