A Comprehensive Dynamic Model for Magnetostrictive Actuators Considering Different Input Frequencies With Mechanical Loads

Magnetostrictive actuators featuring high energy densities, large strokes, and fast responses are playing an increasingly important role in micro/nano-positioning applications. However, such actuators with different input frequencies and mechanical loads exhibit complex dynamics and hysteretic behaviors, posing a great challenge on applications of the actuators. Therefore, it is important to develop a dynamic model that can characterize dynamic behaviors of the actuators, including current-magnetic flux nonlinear hysteresis, frequency responses, and loading effects, simultaneously. To this end, a comprehensive model, which thoroughly considers the electric, magnetic, and mechanical domain, as well as the interactions among them, is developed in this paper. To validate the developed model, the parameters of the model are identified where the hysteresis of the magnetostrictive actuator is described, as an illustration, by the asymmetric shifted Prandtl-Ishlinskii model. The experimental results demonstrate that the comprehensive model presents an excellent agreement with dynamic behaviors of the magnetostrictive actuator.

[1]  M. Brokate,et al.  Hysteresis and Phase Transitions , 1996 .

[2]  Tianyou Chai,et al.  Compensation of Hysteresis Nonlinearity in Magnetostrictive Actuators With Inverse Multiplicative Structure for Preisach Model , 2014, IEEE Transactions on Automation Science and Engineering.

[3]  Y. Wen Method for Random Vibration of Hysteretic Systems , 1976 .

[4]  K. Kuhnen,et al.  Inverse control of systems with hysteresis and creep , 2001 .

[5]  Reinder Banning,et al.  Modeling piezoelectric actuators , 2000 .

[6]  Ciro Visone,et al.  Identification and compensation of Preisach hysteresis models for magnetostrictive actuators , 2001 .

[7]  Daniele Davino,et al.  A Two-Port Nonlinear Model for Magnetoelastic Energy-Harvesting Devices , 2011, IEEE Transactions on Industrial Electronics.

[8]  Zhen Zhang,et al.  Modeling and Control for Giant Magnetostrictive Actuators with Rate-Dependent Hysteresis , 2013, J. Appl. Math..

[9]  Subhash Rakheja,et al.  Adaptive variable structure control of a class of nonlinear systems with unknown Prandtl-Ishlinskii hysteresis , 2005, IEEE Transactions on Automatic Control.

[10]  Minghui Huang,et al.  A Novel LS-SVM Modeling Method for a Hydraulic Press Forging Process With Multiple Localized Solutions , 2015, IEEE Transactions on Industrial Informatics.

[11]  Yan-Hua Ma,et al.  On Modeling and Tracking Control for a Smart Structure with Stress-dependent Hysteresis Nonlinearity , 2010 .

[12]  J. Mao,et al.  On Modeling and Tracking Control for a Smart Structure with Stress-dependent Hysteresis Nonlinearity: On Modeling and Tracking Control for a Smart Structure with Stress-dependent Hysteresis Nonlinearity , 2010 .

[13]  Xinkai Chen,et al.  Modeling and inverse adaptive control of asymmetric hysteresis systems with applications to magnetostrictive actuator , 2014 .

[14]  David Jiles,et al.  A self consistent generalized model for the calculation of minor loop excursions in the theory of hysteresis , 1992, 1992. Digests of Intermag. International Magnetics Conference.

[15]  Zhangxian Deng,et al.  Characterization and finite element modeling of Galfenol minor flux density loops , 2013, Smart Structures.

[16]  Zhen Zhang,et al.  A novel nonlinear adaptive filter for modeling of rate-dependent hysteresis in Giant Magnetostrictive Actuators , 2015, 2015 IEEE International Conference on Mechatronics and Automation (ICMA).

[17]  Li-Min Zhu,et al.  A comprehensive dynamic modeling approach for giant magnetostrictive material actuators , 2013 .

[18]  Xu Cui,et al.  Direct drive servo valve based on magnetostrictive actuator: Multi-coupled modeling and its compound control strategy , 2015 .

[19]  Minqiang Xu,et al.  Modified Jiles-Atherton-Sablik model for asymmetry in magnetomechanical effect under tensile and compressive stress , 2011 .

[20]  Daniele Davino,et al.  Experimental properties of an efficient stress-dependent magnetostriction model , 2009 .

[21]  Han Ding,et al.  Motion Control of Piezoelectric Positioning Stages: Modeling, Controller Design, and Experimental Evaluation , 2013, IEEE/ASME Transactions on Mechatronics.

[22]  Liyi Li,et al.  Research of Fast-Response Giant Magnetostrictive Actuator for Space Propulsion System , 2011, IEEE Transactions on Plasma Science.

[23]  Marcelo J. Dapino,et al.  A homogenized energy model for the direct magnetomechanical effect , 2006, IEEE Transactions on Magnetics.

[24]  F. Preisach Über die magnetische Nachwirkung , 1935 .

[25]  Ferruccio Resta,et al.  A model of magnetostrictive actuators for active vibration control , 2011, 2011 IEEE International Symposium on Industrial Electronics.

[26]  Ralph C. Smith,et al.  Experimental Implementation of a Hybrid Nonlinear Control Design for Magnetostrictive Actuators , 2009 .

[27]  Si-Lu Chen,et al.  Discrete Composite Control of Piezoelectric Actuators for High-Speed and Precision Scanning , 2013, IEEE Transactions on Industrial Informatics.

[28]  Stefan Seelecke,et al.  Free energy model for hysteresis in magnetostrictive transducers , 2003 .

[29]  Sergej Fatikow,et al.  Modeling and Control of Piezo-Actuated Nanopositioning Stages: A Survey , 2016, IEEE Transactions on Automation Science and Engineering.

[30]  Suiyang Khoo,et al.  DSP-Based Sliding-Mode Control for Electromagnetic-Levitation Precise-Position System , 2013, IEEE Transactions on Industrial Informatics.

[31]  A. Olabi,et al.  Design and application of magnetostrictive materials , 2008 .

[32]  Qingsong Xu,et al.  Design and Smooth Position/Force Switching Control of a Miniature Gripper for Automated Microhandling , 2014, IEEE Transactions on Industrial Informatics.

[33]  Xiaojing Zheng,et al.  Effects of hysteresis losses on dynamic behavior of magnetostrictive actuators , 2011 .

[34]  Li-Min Zhu,et al.  Modeling and Compensation of Asymmetric Hysteresis Nonlinearity for Piezoceramic Actuators With a Modified Prandtl–Ishlinskii Model , 2014, IEEE Transactions on Industrial Electronics.

[35]  Ciro Attaianese,et al.  High Performance Digital Hysteresis Control for Single Source Cascaded Inverters , 2013, IEEE Transactions on Industrial Informatics.

[36]  Kirsten Morris,et al.  A new load-dependent hysteresis model for magnetostrictive materials , 2010 .

[37]  Musa Jouaneh,et al.  Generalized preisach model for hysteresis nonlinearity of piezoceramic actuators , 1997 .

[38]  D. Davino,et al.  Phenomenological dynamic model of a magnetostrictive actuator , 2004 .

[39]  Chun-Yi Su,et al.  Experimental characterization and modeling of rate-dependent asymmetric hysteresis of magnetostrictive actuators , 2014 .

[40]  Isaak D. Mayergoyz,et al.  Dynamic Preisach models of hysteresis , 1988 .

[41]  Daniel E. Quevedo,et al.  Switched Model Predictive Control for Improved Transient and Steady-State Performance , 2015, IEEE Transactions on Industrial Informatics.

[42]  John S. Baras,et al.  Modeling and control of a magnetostrictive actuator , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[43]  John S. Baras,et al.  Modeling and control of hysteresis in magnetostrictive actuators , 2004, Autom..

[44]  Qingsong Xu,et al.  Robust Impedance Control of a Compliant Microgripper for High-Speed Position/Force Regulation , 2015, IEEE Transactions on Industrial Electronics.

[45]  D. Jiles,et al.  Theory of ferromagnetic hysteresis , 1986 .

[46]  Dennis S. Bernstein,et al.  Semilinear Duhem model for rate-independent and rate-dependent hysteresis , 2005, IEEE Transactions on Automatic Control.

[47]  R. Ben Mrad,et al.  A model for voltage-to-displacement dynamics in piezoceramic actuators subject to dynamic-voltage excitations , 2002 .