A conjecture of Erdős on graph Ramsey numbers

Abstract The Ramsey number r ( G ) of a graph G is the minimum N such that every red–blue coloring of the edges of the complete graph on N vertices contains a monochromatic copy of G . Determining or estimating these numbers is one of the central problems in combinatorics. One of the oldest results in Ramsey Theory, proved by Erdős and Szekeres in 1935, asserts that the Ramsey number of the complete graph with m edges is at most 2 O ( m ) . Motivated by this estimate Erdős conjectured, more than a quarter century ago, that there is an absolute constant c such that r ( G ) ⩽ 2 c m for any graph G with m edges and no isolated vertices. In this short note we prove this conjecture.

[1]  Frank Plumpton Ramsey,et al.  On a Problem of Formal Logic , 1930 .

[2]  Benny Sudakov,et al.  Density theorems for bipartite graphs and related Ramsey-type results , 2007, Comb..

[3]  Ramsey Theory,et al.  Ramsey Theory , 2020, Set Theory and Foundations of Mathematics: An Introduction to Mathematical Logic.

[4]  Noga A Lon,et al.  Tur an Numbers of Bipartite Graphs and Related Ramsey-Type Questions , 2003 .

[5]  Vojtech Rödl,et al.  The Ramsey number of a graph with bounded maximum degree , 1983, J. Comb. Theory, Ser. B.

[6]  G. Szekeres,et al.  A combinatorial problem in geometry , 2009 .

[7]  Robin Wilson,et al.  Graph theory and combinatorics , 1979 .

[8]  Benny Sudakov,et al.  Two remarks on the Burr-Erdos conjecture , 2009, Eur. J. Comb..

[9]  P. ERD6S,et al.  ON A RAMSEY TYPE THEOREM , 2001 .

[10]  Nancy Eaton Ramsey numbers for sparse graphs , 1998, Discret. Math..

[11]  S. Burr ON THE MAGNITUDE OF GENERALIZED RAMSEY NUMBERS FOR GRAPHS , 1973 .

[12]  David Conlon,et al.  On two problems in graph Ramsey theory , 2012, Comb..

[13]  Paul Erdös,et al.  Some problems in graph theory , 1974 .

[14]  D. Conlon A new upper bound for diagonal Ramsey numbers , 2006, math/0607788.

[15]  E. Szemerédi Regular Partitions of Graphs , 1975 .

[16]  P. Erdös Some remarks on the theory of graphs , 1947 .

[17]  Paul Erdös ON SOME PROBLEMS IN GRAPH THEORY , COMBINATORIAL ANALYSIS AND COMBINATORIAL NUMBER THEORY , 2004 .

[18]  Vojtech Rödl,et al.  On graphs with linear Ramsey numbers , 2000, J. Graph Theory.

[19]  Ronald L. Graham,et al.  Erdős on Graphs , 2020 .

[20]  David Conlon Hypergraph Packing and Sparse Bipartite Ramsey Numbers , 2009, Comb. Probab. Comput..

[21]  P. E. -. R. L. Graham,et al.  ON PARTITION THEOREMS FOR FINITE GRAPHS , 1973 .

[22]  Vojtech Rödl,et al.  On Bipartite Graphs with Linear Ramsey Numbers , 2001, Comb..

[23]  Vojtech Rödl,et al.  On Graphs With Small Ramsey Numbers, II , 2004, Comb..

[24]  Alexandr V. Kostochka,et al.  On Ramsey Numbers of Sparse Graphs , 2003, Combinatorics, Probability and Computing.

[25]  Benny Sudakov,et al.  Induced Ramsey-type theorems , 2007, Electron. Notes Discret. Math..