Laplace's approximation for nonlinear mixed models.

SUMMARY An approximation to Laplace's method for integrals is applied to marginal distributions of data arising from models in which both fixed and random effects enter nonlinearly. The approach provides alternative derivations of some recent algorithms for fitting such models, and it has direct ties with Gaussian restricted maximum likelihood and the accompanying mixed model equations.

[1]  A. Davison Treatment effect heterogeneity in paired data , 1992 .

[2]  D. Bates,et al.  Nonlinear mixed effects models for repeated measures data. , 1990, Biometrics.

[3]  S. Zeger,et al.  Longitudinal data analysis using generalized linear models , 1986 .

[4]  David A. Harville,et al.  Extension of the Gauss-Markov Theorem to Include the Estimation of Random Effects , 1976 .

[5]  O. Barndorff-Nielsen On a formula for the distribution of the maximum likelihood estimator , 1983 .

[6]  R. Schall Estimation in generalized linear models with random effects , 1991 .

[7]  J. Ware,et al.  Random-effects models for serial observations with binary response. , 1984, Biometrics.

[8]  D. Bellhouse On the equivalence of marginal and approximate conditional likelihoods for correlation parameters under a normal model , 1990 .

[9]  T. Louis,et al.  Approximate Posterior Distributions for Incomplete Data Problems , 1982 .

[10]  David R. Cox,et al.  Nonlinear component of variance models , 1992 .

[11]  David R. Cox,et al.  A note on the difference between profile and modified profile likelihood , 1992 .

[12]  Sastry G. Pantula,et al.  Nonlinear Regression with Variance Components , 1992 .

[13]  D. Cox,et al.  Parameter Orthogonality and Approximate Conditional Inference , 1987 .

[14]  D. Harville Bayesian inference for variance components using only error contrasts , 1974 .

[15]  E. Vonesh,et al.  Mixed-effects nonlinear regression for unbalanced repeated measures. , 1992, Biometrics.

[16]  Bing Li,et al.  Laplace expansion for posterior densities of nonlinear functions of parameters , 1992 .

[17]  P. McCullagh,et al.  Generalized Linear Models, 2nd Edn. , 1990 .