Quantum memory for squeezed light.

We produce a 600-ns pulse of 1.86-dB squeezed vacuum at 795 nm in an optical parametric amplifier and store it in a rubidium vapor cell for 1 mus using electromagnetically induced transparency. The recovered pulse, analyzed using time-domain homodyne tomography, exhibits up to 0.21+/-0.04 dB of squeezing. We identify the factors leading to the degradation of squeezing and investigate the phase evolution of the atomic coherence during the storage interval.

[1]  H. Paul,et al.  Measuring the quantum state of light , 1997 .

[2]  Thiagalingam Kirubarajan,et al.  Estimation with Applications to Tracking and Navigation , 2001 .

[3]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.