Model-order reduction of large-scale kth-order linear dynamical systems via a kth-order Arnoldi method

In this paper, we first introduce a kth-order Krylov subspace 𝒢 n (A j ; u) based on a square matrix sequence {A j } and a vector u. Then we present a kth-order Arnoldi procedure for generating an orthonormal basis of 𝒢 n (A j ; u). By applying the projection technique, we derive a structure-preserving kth-order Arnoldi method for reduced-order modelling of the large-scale kth-order linear dynamical system. Applications to polynomial eigenvalue problems are also included. Numerical experiments report the effectiveness of this method.

[1]  Yimin Wei,et al.  Model-order reduction of large-scale second-order MIMO dynamical systems via a block second-order Arnoldi method , 2007, Int. J. Comput. Math..

[2]  David S. Watkins,et al.  POLYNOMIAL EIGENVALUE PROBLEMS WITH HAMILTONIAN STRUCTURE , 2002 .

[3]  Kristofer S. J. Pister,et al.  MEMS SIMULATION USING SUGAR v0.5 , 1998 .

[4]  Peter Benner,et al.  Dimension Reduction of Large-Scale Systems , 2005 .

[5]  G. Stewart Matrix Algorithms, Volume II: Eigensystems , 2001 .

[6]  B. Lohmann,et al.  Order reduction of large scale second-order systems using Krylov subspace methods , 2006 .

[7]  R. Craig,et al.  Model reduction and control of flexible structures using Krylov vectors , 1991 .

[8]  R. Freund Model reduction methods based on Krylov subspaces , 2003, Acta Numerica.

[9]  Zhaojun Bai,et al.  SOAR: A Second-order Arnoldi Method for the Solution of the Quadratic Eigenvalue Problem , 2005, SIAM J. Matrix Anal. Appl..

[10]  Bernard N. Sheehan ENOR: model order reduction of RLC circuits using nodal equations for efficient factorization , 1999, DAC '99.

[11]  Lawrence T. Pileggi,et al.  PRIMA: passive reduced-order interconnect macromodeling algorithm , 1998, 1997 Proceedings of IEEE International Conference on Computer Aided Design (ICCAD).

[12]  R. Freund Krylov Subspaces Associated with Higher-Order Linear Dynamical Systems , 2005, math/0501484.

[13]  R. Freund Krylov-subspace methods for reduced-order modeling in circuit simulation , 2000 .

[14]  Lawrence T. Pileggi,et al.  Asymptotic waveform evaluation for timing analysis , 1990, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[15]  M. A. Akanbi,et al.  Numerical solution of initial value problems in differential - algebraic equations , 2005 .

[16]  Françoise Tisseur,et al.  Perturbation theory for homogeneous polynomial eigenvalue problems , 2003 .

[17]  James Demmel,et al.  Applied Numerical Linear Algebra , 1997 .

[18]  Karl Meerbergen,et al.  The Quadratic Eigenvalue Problem , 2001, SIAM Rev..

[19]  Yunbo Zeng,et al.  Integrable Hamiltonian systems related to the polynomial eigenvalue problem , 1990 .

[20]  Jian Wang,et al.  SAPOR: second-order Arnoldi method for passive order reduction of RCS circuits , 2004, IEEE/ACM International Conference on Computer Aided Design, 2004. ICCAD-2004..

[21]  Z. Bai Krylov subspace techniques for reduced-order modeling of large-scale dynamical systems , 2002 .

[22]  Ren-Cang Li,et al.  Krylov type subspace methods for matrix polynomials , 2006 .

[23]  Nicholas J. Higham,et al.  More on pseudospectra for polynomial eigenvalue problems and applications in control theory , 2002 .

[24]  Roland W. Freund SPRIM: structure-preserving reduced-order interconnect macromodeling , 2004, ICCAD 2004.

[25]  B. Moore Principal component analysis in linear systems: Controllability, observability, and model reduction , 1981 .

[26]  Zhaojun Bai,et al.  Dimension Reduction of Large-Scale Second-Order Dynamical Systems via a Second-Order Arnoldi Method , 2005, SIAM J. Sci. Comput..

[27]  Frann Coise Tisseur Backward Error and Condition of Polynomial Eigenvalue Problems , 1999 .

[28]  K. Ishihara Descent Iterations for Improving Approximate Eigenpairs of Polynomial Eigenvalue Problems with General Complex Matrices , 2002, Computing.