An oriented-design simplified model for the efficiency of a flat plate solar air collector

In systems design, suitably adapted physical models are required. Different modelling approaches for a solar air collector were studied in this paper. First, a classical model was produced, based on a linearization of the conservation of energy equations. Its resolution used traditional matrix methods. In order to improve the possibilities for use in design, the behaviour of the collector was next expressed in terms of efficiency. Lastly, simplified models constructed from the results obtained with the classical linearized model, and explicitly including the design variables of the collector, were proposed. These reduced models were then evaluated in terms of Parsimony, Exactness, Precision and Specialisation (PEPS). It was concluded that one of them (D2), using a low number of variables and of equations, is well suited for the design of solar air collector coupled with other sub-systems in more complex devices such as solar kiln with energy storage.