Identification of Pseudomonas aeruginosa, Burkholderia cepacia complex, and Stenotrophomonas maltophilia in respiratory samples from cystic fibrosis patients using multiplex PCR

A multiplex PCR method was developed to identify P. aeruginosa, B. cepacia complex, and S. maltophilia directly in sputum and oropharyngeal samples from CF patients. One hundred and six patients (53 male, and 53 female) attending our pulmonology clinic were studied from September 2000–April 2001. Two hundred and fifty‐seven samples were cultured in selective media and submitted to multiplex PCR reactions, using three primer pairs targeting specific genomic sequences of each species, with an additional primer pair targeting a stretch of ribosomal 16S DNA, universal for bacteria, to act as a control. P. aeruginosa was isolated by culture in 56% of samples, B. cepacia complex in 4.3%, and S. maltophilia in 2.7%, while multiplex PCR identified P. aeruginosa in 78.7%, B. cepacia complex in 3.9%, and S. maltophilia in 3.1% of samples. Multiplex PCR results were verified by PCR reactions using different species‐specific primers described in the literature and DNA sequencing of amplicons from a few samples. Comparing to culture results, the sensitivity and specificity values of multiplex PCR for bacterial identification were, respectively, 97.2% and 45.5% for P. aeruginosa, 45.5% and 97.9% for B. cepacia complex, and 40% and 97.6% for S. maltophilia. All 10 multiplex PCR‐positive results for B. cepacia complex were confirmed using other species‐specific primers described in the literature, while this approach confirmed results for S. maltophilia identification in 7/8 samples (87.5%). Sequencing of amplicons from samples culture‐negative but multiplex PCR‐positive for P. aeruginosa and B. cepacia complex confirmed their identity, while minor nucleotide differences among amplicons ruled out the hypothesis of PCR contamination. Pediatr Pulmonol. 2004; 37:537–547. © 2004 Wiley‐Liss, Inc.

[1]  R. Gibson,et al.  Predictive value of oropharyngeal cultures for identifying lower airway bacteria in cystic fibrosis patients. , 1991, The American review of respiratory disease.

[2]  R. Stern,et al.  Cultures of thoracotomy specimens confirm usefulness of sputum cultures in cystic fibrosis. , 1984, The Journal of pediatrics.

[3]  P. Vandamme,et al.  Occurrence of multiple genomovars of Burkholderia cepacia in cystic fibrosis patients and proposal of Burkholderia multivorans sp. nov. , 1997, International journal of systematic bacteriology.

[4]  J. Emerson,et al.  Microbiology of sputum from patients at cystic fibrosis centers in the United States. , 1998, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[5]  J. Carlin,et al.  Clinical outcome after early Pseudomonas aeruginosa infection in cystic fibrosis. , 2001, The Journal of pediatrics.

[6]  J. Levi,et al.  Use of selective medium for Burkholderia cepacia isolation in respiratory samples from cystic fibrosis patients. , 2002, Revista do Instituto de Medicina Tropical de Sao Paulo.

[7]  N. Høiby,et al.  Prevention of chronic Pseudomonas aeruginosa colonisation in cystic fibrosis by early treatment , 1991, The Lancet.

[8]  M. Corey,et al.  Pseudomonas cepacia infection in cystic fibrosis: an emerging problem. , 1984, The Journal of pediatrics.

[9]  J. Lipuma,et al.  BURKHOLDERIA CEPACIA: Management Issues and New Insights , 1998 .

[10]  P. Dřevínek,et al.  Direct PCR Detection of Burkholderia cepacia Complex and Identification of Its Genomovars by Using Sputum as Source of DNA , 2002, Journal of Clinical Microbiology.

[11]  R. Stern,et al.  Stenotrophomonas maltophilia in cystic fibrosis: Incidence and prevalence , 1998, Pediatric pulmonology.

[12]  A. Smith,et al.  Selective media for the quantitation of bacteria in cystic fibrosis sputum. , 1984, Journal of medical microbiology.

[13]  C. Wielinski,et al.  Prognostic implications of initial oropharyngeal bacterial flora in patients with cystic fibrosis diagnosed before the age of two years. , 1993, The Journal of pediatrics.

[14]  N. Høiby,et al.  Antibiotic treatment of initial colonization with Pseudomonas aeruginosa postpones chronic infection and prevents deterioration of pulmonary function in cystic fibrosis , 1997, Pediatric pulmonology.

[15]  P. Whitby,et al.  Identification of Members of the Burkholderia cepacia Complex by Species-Specific PCR , 2000, Journal of Clinical Microbiology.

[16]  J. Jonasson,et al.  Polymerase chain reaction for the detection ofPseudomonas aeruginosa,Stenotrophomonas maltophiliaandBurkholderia cepaciain sputum of patients with cystic fibrosis , 1996 .

[17]  M. Tanner,et al.  Development of a PCR probe test for identifying Pseudomonas aeruginosa and Pseudomonas (Burkholderia) cepacia. , 1994, Journal of clinical pathology.

[18]  N. Heerema,et al.  Multiplex PCR: critical parameters and step-by-step protocol. , 1997, BioTechniques.

[19]  J. Elborn,et al.  PCR-Based Detection and Identification ofBurkholderiacepacia Complex Pathogens in Sputum from Cystic Fibrosis Patients , 2001, Journal of Clinical Microbiology.

[20]  K. Kerr,et al.  Microbiological and Clinical Aspects of Infection Associated with Stenotrophomonas maltophilia , 1998, Clinical Microbiology Reviews.

[21]  J. Emerson,et al.  Longitudinal assessment of Pseudomonas aeruginosa in young children with cystic fibrosis. , 2001, The Journal of infectious diseases.

[22]  S. Butler,et al.  Impact of Microbiology Practice on Cumulative Prevalence of Respiratory Tract Bacteria in Patients with Cystic Fibrosis , 1999, Journal of Clinical Microbiology.

[23]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[24]  T. Rozov,et al.  PCR identification of Pseudomonas aeruginosa and direct detection in clinical samples from cystic fibrosis patients. , 1999, Journal of medical microbiology.

[25]  P. Beringer,et al.  Unusual respiratory bacterial flora in cystic fibrosis: microbiologic and clinical features , 2000, Current opinion in pulmonary medicine.

[26]  V. Deretic,et al.  Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia. , 1996, Microbiological reviews.

[27]  L. Saiman,et al.  Infection Control Recommendations for Patients With Cystic Fibrosis: Microbiology, Important Pathogens, and Infection Control Practices to Prevent Patient-to-Patient Transmission , 2003, Infection Control & Hospital Epidemiology.

[28]  P. Vandamme,et al.  Misidentification of Burkholderia cepacia in US cystic fibrosis treatment centers: an analysis of 1,051 recent sputum isolates. , 2000, Chest.

[29]  P. Whitby,et al.  Identification and Detection ofStenotrophomonas maltophilia by rRNA-Directed PCR , 2000, Journal of Clinical Microbiology.

[30]  J. Govan,et al.  Detection of Pseudomonas aeruginosa in sputum from cystic fibrosis patients by the polymerase chain reaction. , 1992, Molecular and cellular probes.

[31]  S. Kwok,et al.  Avoiding false positives with PCR , 1989, Nature.

[32]  G. Cutting,et al.  The diagnosis of cystic fibrosis: a consensus statement. Cystic Fibrosis Foundation Consensus Panel. , 1998, The Journal of pediatrics.

[33]  A. Bauernfeind,et al.  Discrimination of Burkholderia multivorans and Burkholderia vietnamiensis fromBurkholderia cepacia Genomovars I, III, and IV by PCR , 1999, Journal of Clinical Microbiology.

[34]  J. Emerson,et al.  Diagnostic accuracy of oropharyngeal cultures in infants and young children with cystic fibrosis , 1999, Pediatric pulmonology.

[35]  S Falkow,et al.  The agent of bacillary angiomatosis. An approach to the identification of uncultured pathogens. , 1990, The New England journal of medicine.

[36]  J. Phillips,et al.  Detection of Pseudomonas (Burkholderia) cepacia using PCR , 1995, Pediatric pulmonology.

[37]  J. Carlin,et al.  Bronchoalveolar lavage or oropharyngeal cultures to identify lower respiratory pathogens in infants with cystic fibrosis , 1996, Pediatric pulmonology.

[38]  P. Vandamme,et al.  Burkholderia anthina sp. nov. and Burkholderia pyrrocinia, two additional Burkholderia cepacia complex bacteria, may confound results of new molecular diagnostic tools. , 2002, FEMS immunology and medical microbiology.

[39]  W. Timens,et al.  Haemophilus influenzae in lung explants of patients with end-stage pulmonary disease. , 1998, American journal of respiratory and critical care medicine.

[40]  J. Carlin,et al.  Cost of delayed childbearing , 2002, Archives of disease in childhood.

[41]  Q. Shi,et al.  Multicolor fluorescence in situ hybridization analysis of meiotic chromosome segregation in a 47,XYY male and a review of the literature. , 2000, American journal of medical genetics.

[42]  P. Vandamme,et al.  Phenotypic Methods for Determining Genomovar Status of the Burkholderia cepacia Complex , 2001, Journal of Clinical Microbiology.

[43]  R. Spencer The emergence of epidemic, multiple-antibiotic-resistant Stenotrophomonas (Xanthomonas) maltophilia and Burkholderia (Pseudomonas) cepacia. , 1995, The Journal of hospital infection.

[44]  P. Vandamme,et al.  DNA-Based Diagnostic Approaches for Identification of Burkholderia cepacia Complex, Burkholderia vietnamiensis, Burkholderia multivorans,Burkholderia stabilis, and Burkholderia cepacia Genomovars I and III , 2000, Journal of Clinical Microbiology.

[45]  R. Yolken Nucleic acid amplification assays for microbial diagnosis: challenges and opportunities. , 2002, The Journal of pediatrics.

[46]  M. Noble,et al.  Xanthomonas maltophilia misidentified as Pseudomonas cepacia in cultures of sputum from patients with cystic fibrosis: a diagnostic pitfall with major clinical implications. , 1995, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.