Inference Systems for Logical Algorithms

Logical algorithms are defined in terms of individual computation steps that are based on logical inferences. We present a uniform framework for formalizing logical algorithms based on inference systems. We present inference systems for algorithms such as resolution, the Davis–Putnam–Logemann–Loveland procedure, equivalence and congruence closure, and satisfiability modulo theories. The paper is intended as an introduction to the use of inference systems for studying logical algorithms.

[1]  Michael J. C. Gordon,et al.  Edinburgh LCF: A mechanised logic of computation , 1979 .

[2]  Hilary Putnam,et al.  A Computing Procedure for Quantification Theory , 1960, JACM.

[3]  Alan Robinson,et al.  The Inverse Method , 2001, Handbook of Automated Reasoning.

[4]  Jacques Cohen,et al.  A view of the origins and development of Prolog , 1988, CACM.

[5]  M. Gordon,et al.  Introduction to HOL: a theorem proving environment for higher order logic , 1993 .

[6]  John Harrison,et al.  HOL Light: A Tutorial Introduction , 1996, FMCAD.

[7]  S. C. Kleene,et al.  Introduction to Metamathematics , 1952 .

[8]  Robert E. Shostak,et al.  An algorithm for reasoning about equality , 1977, CACM.

[9]  Robert E. Shostak,et al.  A Practical Decision Procedure for Arithmetic with Function Symbols , 1979, JACM.

[10]  Larry Wos,et al.  Efficiency and Completeness of the Set of Support Strategy in Theorem Proving , 1965, JACM.

[11]  M. Davis A Computer Program for Presburger’s Algorithm , 1983 .

[12]  W. W. Bledsoe,et al.  Non-Resolution Theorem Proving , 1977, Artif. Intell..

[13]  Robert S. Boyer,et al.  Computational Logic , 1990, ESPRIT Basic Research Series.

[14]  Geoff Sutcliffe,et al.  The TPTP Problem Library , 1994, Journal of Automated Reasoning.

[15]  Bruno Buchberger,et al.  A theoretical basis for the reduction of polynomials to canonical forms , 1976, SIGS.

[16]  D. Knuth,et al.  Simple Word Problems in Universal Algebras , 1983 .

[17]  William McCune,et al.  Solution of the Robbins Problem , 1997, Journal of Automated Reasoning.

[18]  Robert E. Shostak,et al.  Deciding Combinations of Theories , 1982, JACM.

[19]  Greg Nelson,et al.  Simplification by Cooperating Decision Procedures , 1979, TOPL.

[20]  J. A. Robinson,et al.  Automatic Deduction with Hyper-Resolution , 1983 .

[21]  Lawrence Charles Paulson,et al.  Isabelle: A Generic Theorem Prover , 1994 .

[22]  R. Petit A Tutorial Introduction , 1980 .

[23]  Donald W. Loveland,et al.  A machine program for theorem-proving , 2011, CACM.

[24]  Philip Wadler Call-by-Value Is Dual to Call-by-Name - Reloaded , 2005, RTA.

[25]  Albert Oliveras,et al.  Proof-Producing Congruence Closure , 2005, RTA.

[26]  J. A. Robinson,et al.  A Machine-Oriented Logic Based on the Resolution Principle , 1965, JACM.

[27]  Deepak Kapur,et al.  Shostak's Congruence Closure as Completion , 1997, RTA.

[28]  Robert E. Tarjan,et al.  Variations on the Common Subexpression Problem , 1980, J. ACM.

[29]  de Ng Dick Bruijn,et al.  A survey of the project Automath , 1980 .

[30]  Dexter Kozen,et al.  Complexity of finitely presented algebras , 1977, STOC '77.

[31]  Allen Newell,et al.  Empirical explorations with the logic theory machine: a case study in heuristics , 1995 .

[32]  Rance Cleaveland,et al.  Implementing mathematics with the Nuprl proof development system , 1986 .

[33]  J. C. Shaw,et al.  Empirical explorations of the logic theory machine: a case study in heuristic , 1899, IRE-AIEE-ACM '57 (Western).

[34]  Hugo Herbelin,et al.  The Coq proof assistant : reference manual, version 6.1 , 1997 .

[35]  H. Brown,et al.  Computational Problems in Abstract Algebra , 1971 .

[36]  Natarajan Shankar,et al.  Justifying Equality , 2005, Electron. Notes Theor. Comput. Sci..

[37]  Ashish Tiwari,et al.  Abstract Congruence Closure , 2003, Journal of Automated Reasoning.