Structural, magnetic, and dielectric properties of Sr_1 − xCa_xFe_12 − ySm_yO_19 (x = 0.00–0.20, y = 0.00–0.05) hexaferrite

[1]  A. Gholizadeh,et al.  A correlation between microstructural and impedance properties of MnFe2-Co O4 nanoparticles , 2023, Physica B: Condensed Matter.

[2]  A. Gholizadeh,et al.  Structural, magnetic, and dielectric properties of Ni/Zn co-substituted CuFe2O4 nanoparticles , 2022, Physica B: Condensed Matter.

[3]  H. Garmestani,et al.  Fabrication of Ionic Liquid Based d-Ti3C2/MoO3 Hybrid Electrode System for Efficient Energy Storage Applications , 2022, Electrochimica Acta.

[4]  J. Xie,et al.  High-performance visible-light active Sr-doped porous LaFeO3 semiconductor prepared via sol–gel method , 2022, Green Chemistry Letters and Reviews.

[5]  A. Gholizadeh,et al.  The effect of the annealing temperature on the microstructural, magnetic, and spin-dynamical properties of Mn–Mg–Cu–Zn ferrites , 2022, Physica B: Condensed Matter.

[6]  A. Zahedi,et al.  Cadmium Substitution Effect on Microstructure and Magnetic Properties of Mg-Cu-Zn Ferrites , 2022, Frontiers in Materials.

[7]  H. Garmestani,et al.  Opposite Sensing Response of Heterojunction Gas Sensors Based on SnO2-Cr2O3 Nanocomposites to H2 against CO and Its Selectivity Mechanism. , 2021, Langmuir : the ACS journal of surfaces and colloids.

[8]  Huanlei Wang,et al.  Significantly enhanced high permittivity and negative permittivity in Ag/Al2O3/3D-BaTiO3/epoxy metacomposites with unique hierarchical heterogeneous microstructures , 2021 .

[9]  V. Kaur,et al.  Effect of calcium solubility on structural, microstructural and magnetic properties of M-type barium hexaferrite , 2021, Ceramics International.

[10]  A. Gholizadeh,et al.  Hydrothermal synthesis of Ce/Zr co-substituted BiFeO3: R3c-to-P4mm phase transition and enhanced room temperature ferromagnetism , 2021, Journal of Materials Science: Materials in Electronics.

[11]  K. Shahzad,et al.  Structural, magnetic, and dielectric properties of Ti4+−M2+ co-doped BaFe11Ti0.5M0.5O19 hexaferrites (M=Co2+,Ni2+,Zn2+) , 2021, Ceramics International.

[12]  J. Cerdá,et al.  An ab initio study of the magnetic properties of strontium hexaferrite , 2021, Scientific Reports.

[13]  Darko Makovec,et al.  Progress and prospects of hard hexaferrites for permanent magnet applications , 2020 .

[14]  A. Gholizadeh,et al.  Shape control and associated magnetic and dielectric properties of MFe12O19 (M = Ba, Pb, Sr) hexaferrites , 2020 .

[15]  V. Harris,et al.  Suppressed domain wall damping in planar BaM hexaferrites for miniaturization of microwave devices , 2020 .

[16]  A. Gholizadeh,et al.  The effect of Nd and Zr co-substitution on structural, magnetic and photocatalytic properties of Bi1-xNdxFe1-xZrxO3 nanoparticles , 2020 .

[17]  M. Izadifard,et al.  A study of Ca-doped hexaferrite Sr1−xCaxFe12O19 (x = 0.0, 0.05, 0.1, 0.15, and 0.2) synthesized by sol-gel combustion method , 2020, Physica Scripta.

[18]  E. Iffer,et al.  New nanosized Gd–Ho–Sm doped M-type strontium hexaferrite for water treatment application: experimental and theoretical investigations , 2020, RSC advances.

[19]  A. Gholizadeh,et al.  Investigation on the structural, magnetic, dielectric and impedance analysis of Mg0.3-Ba Cu0.2Zn0.5Fe2O4 nanoparticles , 2020 .

[20]  V. Luzin,et al.  Elucidating the relationship between nanoparticle morphology, nuclear/magnetic texture and magnetic performance of sintered SrFe12O19 magnets. , 2020, Nanoscale.

[21]  Lanting Zhang,et al.  Enhanced photo Fenton-like activity by effective and stable Al–Sm M-hexaferrite heterogenous catalyst magnetically detachable for methylene blue degradation , 2020 .

[22]  T. Jayakumar,et al.  Structural, Magnetic and Optical Analysis of Pb2+- and Ce3+-Doped Strontium Hexaferrite , 2020, Journal of Superconductivity and Novel Magnetism.

[23]  A. Gholizadeh,et al.  A comparative study of the effect of the non-magnetic and magnetic trivalent rare-earth ion substitutions on bismuth ferrite properties: Correlation between the crystal structure and physical properties , 2020 .

[24]  Xiansong Liu,et al.  Characterizations analysis of magneto-structural transitions in Ce-Co doped SrM based nano Sr1−xCexFe12−xCoxO19 hexaferrite crystallites prepared by ceramic route , 2020 .

[25]  A. Gholizadeh,et al.  Structural, magnetic, elastic, and dielectric properties of Mn0.3−xCdxCu0.2Zn0.5Fe2O4 nanoparticles , 2020, Journal of Materials Science: Materials in Electronics.

[26]  M. Priya,et al.  Effect of Co and Sm Substitutions on the Magnetic Interactions of M-Type Strontium Hexaferrite Nanoparticles , 2020, Journal of Superconductivity and Novel Magnetism.

[27]  M. Izadifard,et al.  Structural, optical, dielectric and magnetic properties of Ce-doped strontium hexaferrite synthesized by a hydrothermal process , 2019, Journal of Materials Science: Materials in Electronics.

[28]  J. Marco,et al.  Strontium hexaferrite platelets: a comprehensive soft X-ray absorption and Mössbauer spectroscopy study , 2019, Scientific Reports.

[29]  V. Sathe,et al.  Porous and highly conducting cathode material PrBaCo2O6-δ: bulk and surface studies of synthesis anomalies. , 2019, Physical chemistry chemical physics : PCCP.

[30]  A. Gholizadeh,et al.  Structural, magnetic and elastic properties of Mn0.3−xMgxCu0.2Zn0.5Fe3O4 nanoparticles , 2019, Ceramics International.

[31]  Young-Min Kang,et al.  Effect of Ca and La substitution on the structure and magnetic properties of M-type Sr-hexaferrites , 2019, Journal of Alloys and Compounds.

[32]  M. Avdeev,et al.  Nanoengineered High-Performance Hexaferrite Magnets by Morphology-Induced Alignment of Tailored Nanoplatelets , 2018, ACS Applied Nano Materials.

[33]  D. S. Klygach,et al.  Measurement of permittivity and permeability of barium hexaferrite , 2018, Journal of Magnetism and Magnetic Materials.

[34]  R. Müller,et al.  Phase formation, magnetic properties, and phase stability in reducing atmosphere of M-type strontium hexaferrite nanoparticles synthesized via a modified citrate process , 2018, Journal of Materials Science.

[35]  P. Thakur,et al.  Control of electromagnetic properties in substituted M-type hexagonal ferrites , 2018, Journal of Alloys and Compounds.

[36]  Lagen Kumar Pradhan,et al.  Effect of lattice strain on structural and magnetic properties of Ca substituted barium hexaferrite , 2018, Journal of Magnetism and Magnetic Materials.

[37]  A. Gholizadeh,et al.  Effect of non-magnetic ions substitution on the structure and magnetic properties of Y3−xSrxFe5−xZrxO12 nanoparticles , 2018, Journal of Magnetism and Magnetic Materials.

[38]  Longjun Xu,et al.  Preparation and magnetic properties of Sm–Co doped strontium ferrite , 2018 .

[39]  A. Gholizadeh A comparative study of the physical properties of Cu-Zn ferrites annealed under different atmospheres and temperatures: Magnetic enhancement of Cu 0.5 Zn 0.5 Fe 2 O 4 nanoparticles by a reducing atmosphere , 2018 .

[40]  M. Jansen,et al.  Ca-Al double-substituted strontium hexaferrites with giant coercivity. , 2018, Chemical communications.

[41]  L. Panina,et al.  Polarization origin and iron positions in indium doped barium hexaferrites , 2018 .

[42]  A. Benyoussef,et al.  Experimental and theoretical investigation of SrFe12O19 nanopowder for permanent magnet application , 2017 .

[43]  Prabhakar Singh,et al.  Sm/Ti co-substituted bismuth ferrite multiferroics: reciprocity between tetragonality and piezoelectricity. , 2017, Physical chemistry chemical physics : PCCP.

[44]  A. Gholizadeh A comparative study of physical properties in Fe3O4 nanoparticles prepared by coprecipitation and citrate methods , 2017 .

[45]  U. Chandra Recent Applications in Sol-Gel Synthesis , 2017 .

[46]  Preksha N. Dhruv,et al.  Elucidation of phase evolution, microstructural, Mössbauer and magnetic properties of Co2+Al3+ doped M-type BaSr hexaferrites synthesized by a ceramic method , 2017 .

[47]  Sanjay R. Mishra,et al.  Structural and magnetic properties of Co2+-W4+ ions doped M-type Ba-Sr hexaferrites synthesized by a ceramic method , 2017 .

[48]  E. Jafari,et al.  Effects of sintering atmosphere and temperature on structural and magnetic properties of Ni-Cu-Zn ferrite nano-particles: Magnetic enhancement by a reducing atmosphere , 2017 .

[49]  O. Gutfleisch,et al.  Enhancement of coercivity and saturation magnetization of Al3+ substituted M-type Sr-hexaferrites , 2017 .

[50]  H. Mostafa Elucidation of phase evolution, microstructural, Mössbauer and magnetic properties of Co 2+ Al 3+ doped M-type Ba Sr hexaferrites synthesized by a ceramic method , 2017 .

[51]  H. Mostafa Structural and magnetic properties of Co 2+-W 4+ ions doped M-type Ba-Sr hexaferrites synthesized by a ceramic method , 2017 .

[52]  V. G. Kostishin,et al.  Magnetic and absorbing properties of M-type substituted hexaferrites BaFe12–xGaxO19 (0.1 < x < 1.2) , 2016 .

[53]  A. Ghasemi,et al.  Development of novel magnetic-dielectric ceramics for enhancement of reflection loss in X band , 2016 .

[54]  C. N. Anumol,et al.  Exchange spring like magnetic behavior in cobalt ferrite nanoparticles , 2016 .

[55]  M. Siddique,et al.  Investigation on the structural, dielectric and impedance analysis of manganese substituted cobalt ferrite i.e., Co1−xMnxFe2O4 (0.0 ≤ x ≤ 0.4) , 2016 .

[56]  A. Ghasemi,et al.  Synthesis and Evaluation of Microstructural and Magnetic Properties of Cr3+ Substitution Barium Hexaferrite Nanoparticles (BaFe10.5−xAl1.5CrxO19) , 2016, Journal of Cluster Science.

[57]  Sylvia M. Johnson,et al.  Processing and Properties of Advanced Ceramics and Composites VII: Ceramic Transactions, Volume 252 , 2015 .

[58]  Y. Ma,et al.  Simultaneous effects of surface spins: rarely large coercivity, high remanence magnetization and jumps in the hysteresis loops observed in CoFe2O4 nanoparticles. , 2015, Nanoscale.

[59]  Longjun Xu,et al.  Structural and Magnetic Properties of Sm-Doped Strontium Hexaferrite (SrFe12–xSmxO19) Powders , 2014 .

[60]  M. Ghazi,et al.  Structural and magnetic characterization of La{sub 0.8}Sr{sub 0.2}MnO{sub 3} nanoparticles prepared via a facile microwave-assisted method , 2014 .

[61]  P. Wang,et al.  Room-Temperature Ferrimagnet with Frustrated Antiferroelectricity: Promising Candidate Toward Multiple-State Memory , 2014, 1401.2747.

[62]  Mukhtar Ahmad,et al.  Structural, Electrical, and Microstructure Properties of Nanostructured Calcium Doped Ba-Hexaferrites Synthesized by Sol-Gel Method , 2013 .

[63]  R. Pullar Hexagonal ferrites: A review of the synthesis, properties and applications of hexaferrite ceramics , 2012 .

[64]  S. Jacobo,et al.  The influence of Nd–Co substitution on the magnetic properties of non-stoichiometric strontium hexaferrite nanoparticles , 2009 .

[65]  Xu Zuo,et al.  Recent advances in processing and applications of microwave ferrites , 2009 .

[66]  R. Camley,et al.  Nonreciprocal microwave devices based on magnetic nanowires , 2009 .

[67]  G. Srinivasan,et al.  Subterahertz excitations and magnetoelectric effects in hexaferrite-piezoelectric bilayers , 2008 .

[68]  A. Ghasemi,et al.  Structural and electromagnetic characteristics of substituted strontium hexaferrite nanoparticles , 2008 .

[69]  M. Drofenik,et al.  The influence of the coprecipitation conditions on the low-temperature formation of barium hexaferrite , 2007 .

[70]  R. Metselaar,et al.  Magnetic and electronic properties of strontium hexaferrite SrFe12O19 from first-principles calculations , 2003 .

[71]  L. Davis,et al.  Ferrite devices and materials , 2002 .

[72]  T. Wagner,et al.  Preparation and Crystal Structure Analysis of Magnetoplumbite-Type BaGa12O19 , 1998 .

[73]  H. Pfeiffer,et al.  Investigation of Magnetic Properties of Barium Ferrite Powders by Remanence Curves , 1990 .

[74]  G. C.,et al.  Electricity and Magnetism , 1888, Nature.