The weight-constrained maximum-density subtree problem and related problems in trees
暂无分享,去创建一个
[1] Yaw-Ling Lin,et al. Efficient algorithms for locating the length-constrained heaviest segments with applications to biomolecular sequence analysis , 2002, J. Comput. Syst. Sci..
[2] Kun-Mao Chao,et al. Finding a Length-Constrained Maximum-Density Path in a Tree , 2005, J. Comb. Optim..
[3] Kun-Mao Chao,et al. Recent Developments in Linear-Space Alignment Methods: A Survey , 1994, J. Comput. Biol..
[4] D. West. Introduction to Graph Theory , 1995 .
[5] G Bernardi,et al. An approach to the organization of eukaryotic genomes at a macromolecular level. , 1976, Journal of molecular biology.
[6] Hoong Chuin Lau,et al. Finding a length-constrained maximum-sum or maximum-density subtree and its application to logistics , 2006, Discret. Optim..
[7] I. Longden,et al. EMBOSS: the European Molecular Biology Open Software Suite. , 2000, Trends in genetics : TIG.
[8] Chuan Yi Tang,et al. An Efficient Algorithm for the Length-Constrained Heaviest Path Problem on a Tree , 1999, Inf. Process. Lett..
[9] Song Jiang,et al. LightFlood: Minimizing Redundant Messages and Maximizing Scope of Peer-to-Peer Search , 2008, IEEE Transactions on Parallel and Distributed Systems.
[10] A. Nekrutenko,et al. Assessment of compositional heterogeneity within and between eukaryotic genomes. , 2000, Genome research.
[11] Michael Sipser,et al. Introduction to the Theory of Computation , 1996, SIGA.
[12] W. Miller,et al. Comparison of five methods for finding conserved sequences in multiple alignments of gene regulatory regions. , 1999, Nucleic acids research.
[13] Sung Kwon Kim,et al. Linear-time algorithm for finding a maximum-density segment of a sequence , 2003, Inf. Process. Lett..
[14] X. Huang,et al. An algorithm for identifying regions of a DNA sequence that satisfy a content requirement , 1994, Comput. Appl. Biosci..
[15] Hsueh-I Lu,et al. An Optimal Algorithm for the Maximum-Density Segment Problem , 2003, SIAM J. Comput..
[16] Li Xiao,et al. Location awareness in unstructured peer-to-peer systems , 2005, IEEE Transactions on Parallel and Distributed Systems.
[17] Yaw-Ling Lin,et al. MAVG: locating non-overlapping maximum average segments in a given sequence , 2003, Bioinform..
[18] Li Xiao,et al. Fast and low-cost search schemes by exploiting localities in P2P networks , 2005, J. Parallel Distributed Comput..
[19] Li Xiao,et al. Improving unstructured peer-to-peer systems by adaptive connection establishment , 2005, IEEE Transactions on Computers.
[20] Li Xiao,et al. Improving Query Response Delivery Quality in Peer-to-Peer Systems , 2006, IEEE Transactions on Parallel and Distributed Systems.
[21] Li Xiao,et al. An Effective P2P Search Scheme to Exploit File Sharing Heterogeneity , 2007, IEEE Transactions on Parallel and Distributed Systems.
[22] Chuan Yi Tang,et al. An improved algorithm for finding a length-constrained maximum-density subtree in a tree , 2008, Inf. Process. Lett..
[23] Ömer Egecioglu,et al. A new approach to sequence comparison: normalized sequence alignment , 2001, Bioinform..
[24] A. V. Aho,et al. On Computing All Suboptimal Alignments 1 , 1997 .
[25] Ross B. Inman,et al. A denaturation map of the λ phage DNA molecule determined by electron microscopy , 1966 .
[26] Ming-Yang Kao,et al. Fast Algorithms for Finding Maximum-Density Segments of a Sequence with Applications to Bioinformatics , 2002, WABI.