Layer VQE: A Variational Approach for Combinatorial Optimization on Noisy Quantum Computers

Combinatorial optimization on near-term quantum devices is a promising path to demonstrating quantum advantage. However, the capabilities of these devices are constrained by high noise levels and limited error mitigation. In this paper, we propose an iterative Layer VQE (L-VQE) approach, inspired by the Variational Quantum Eigensolver (VQE). We present a large-scale numerical study, simulating circuits with up to 40 qubits and 352 parameters, that demonstrates the potential of the proposed approach. We evaluate quantum optimization heuristics on the problem of detecting multiple communities in networks, for which we introduce a novel qubit-frugal formulation. We numerically compare L-VQE with QAOA and demonstrate that QAOA achieves lower approximation ratios while requiring significantly deeper circuits. We show that L-VQE is more robust to sampling noise and has a higher chance of finding the solution as compared with standard VQE approaches. Our simulation results show that L-VQE performs well under realistic hardware noise.

[1]  Ilya Safro,et al.  Multistart Methods for Quantum Approximate optimization , 2019, 2019 IEEE High Performance Extreme Computing Conference (HPEC).

[2]  Christian F. A. Negre,et al.  Graph Partitioning using Quantum Annealing on the D-Wave System , 2017, ArXiv.

[3]  Ruslan Shaydulin,et al.  Classical symmetries and QAOA , 2020, ArXiv.

[4]  Kunal Sharma,et al.  Connecting ansatz expressibility to gradient magnitudes and barren plateaus , 2021, ArXiv.

[5]  F. Brandão,et al.  For Fixed Control Parameters the Quantum Approximate Optimization Algorithm's Objective Function Value Concentrates for Typical Instances , 2018, 1812.04170.

[6]  Artur F. Izmaylov,et al.  Iterative Qubit Coupled Cluster approach with efficient screening of generators. , 2019, Journal of chemical theory and computation.

[7]  Patrick J. Coles,et al.  Machine Learning of Noise-Resilient Quantum Circuits , 2020, PRX Quantum.

[8]  Harper R. Grimsley,et al.  An adaptive variational algorithm for exact molecular simulations on a quantum computer , 2018, Nature Communications.

[9]  P. Alam ‘E’ , 2021, Composites Engineering: An A–Z Guide.

[10]  Y. Yordanov,et al.  Efficient quantum circuits for quantum computational chemistry , 2020, Physical Review A.

[11]  Rupak Biswas,et al.  From the Quantum Approximate Optimization Algorithm to a Quantum Alternating Operator Ansatz , 2017, Algorithms.

[12]  Andrew W. Cross,et al.  Quantum optimization using variational algorithms on near-term quantum devices , 2017, Quantum Science and Technology.

[13]  W. Marsden I and J , 2012 .

[14]  T. Volkoff Efficient Trainability of Linear Optical Modules in Quantum Optical Neural Networks , 2020, Journal of Russian Laser Research.

[15]  Stefan M. Wild,et al.  Asynchronously parallel optimization solver for finding multiple minima , 2018, Math. Program. Comput..

[16]  Prasanna Balaprakash,et al.  Learning to Optimize Variational Quantum Circuits to Solve Combinatorial Problems , 2020, AAAI.

[17]  Leo Zhou,et al.  Quantum Approximate Optimization Algorithm: Performance, Mechanism, and Implementation on Near-Term Devices , 2018, Physical Review X.

[18]  Ilya Safro,et al.  Network Community Detection on Small Quantum Computers , 2018, Advanced Quantum Technologies.

[19]  Catarina Junqueira,et al.  Modeling Linear Inequality Constraints in Quadratic Binary Optimization for Variational Quantum Eigensolver , 2020, 2007.13245.

[20]  Giacomo Nannicini,et al.  Improving Variational Quantum Optimization using CVaR , 2019, Quantum.

[21]  M. Cerezo,et al.  Noise-induced barren plateaus in variational quantum algorithms , 2020, Nature Communications.

[22]  M. J. D. Powell,et al.  Direct search algorithms for optimization calculations , 1998, Acta Numerica.

[23]  Scott N. Genin,et al.  Qubit Coupled Cluster Method: A Systematic Approach to Quantum Chemistry on a Quantum Computer. , 2018, Journal of chemical theory and computation.

[24]  Gorjan Alagic,et al.  #p , 2019, Quantum information & computation.

[25]  M. Powell A Direct Search Optimization Method That Models the Objective and Constraint Functions by Linear Interpolation , 1994 .

[26]  Arthur Pesah,et al.  Absence of Barren Plateaus in Quantum Convolutional Neural Networks , 2020, Physical Review X.

[27]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[28]  Rodney J. Bartlett,et al.  Alternative coupled-cluster ansätze II. The unitary coupled-cluster method , 1989 .

[29]  Giacomo Nannicini,et al.  Performance of hybrid quantum/classical variational heuristics for combinatorial optimization , 2018, Physical review. E.

[30]  J. Gambetta,et al.  Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets , 2017, Nature.

[31]  Masoud Mohseni,et al.  Low-Depth Mechanisms for Quantum Optimization , 2020, PRX Quantum.

[32]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[33]  Cheng Xue,et al.  Effects of Quantum Noise on Quantum Approximate Optimization Algorithm , 2019 .

[34]  Ryan Babbush,et al.  Barren plateaus in quantum neural network training landscapes , 2018, Nature Communications.

[35]  Stefan Woerner,et al.  The power of quantum neural networks , 2020, Nature Computational Science.

[36]  Patrick J. Coles,et al.  Higher order derivatives of quantum neural networks with barren plateaus , 2020, 2008.07454.

[37]  Lars Backstrom,et al.  The Anatomy of the Facebook Social Graph , 2011, ArXiv.

[38]  Harper R. Grimsley,et al.  qubit-ADAPT-VQE: An adaptive algorithm for constructing hardware-efficient ansatze on a quantum processor , 2019, 1911.10205.

[39]  Gavin E. Crooks,et al.  Performance of the Quantum Approximate Optimization Algorithm on the Maximum Cut Problem , 2018, 1811.08419.

[40]  Martin Leib,et al.  Training the quantum approximate optimization algorithm without access to a quantum processing unit , 2019, Quantum Science and Technology.

[41]  Stefan M. Wild,et al.  A batch, derivative-free algorithm for finding multiple local minima , 2016 .

[42]  Sophia E. Economou,et al.  An adaptive quantum approximate optimization algorithm for solving combinatorial problems on a quantum computer , 2020 .

[43]  Ivano Tavernelli,et al.  Quantum algorithms for electronic structure calculations: Particle-hole Hamiltonian and optimized wave-function expansions , 2018, Physical Review A.

[44]  Kunal Sharma,et al.  Trainability of Dissipative Perceptron-Based Quantum Neural Networks , 2020, ArXiv.

[45]  Nathan Wiebe,et al.  Entanglement Induced Barren Plateaus , 2020, PRX Quantum.

[46]  Ilya Safro,et al.  A Hybrid Approach for Solving Optimization Problems on Small Quantum Computers , 2019, Computer.

[47]  Y. Yordanov,et al.  Iterative qubit-excitation based variational quantum eigensolver , 2021 .

[48]  Stuart Hadfield,et al.  Optimizing quantum heuristics with meta-learning , 2019, Quantum Machine Intelligence.

[49]  M E J Newman,et al.  Modularity and community structure in networks. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[50]  P. Alam ‘L’ , 2021, Composites Engineering: An A–Z Guide.

[51]  Christian F. A. Negre,et al.  Detecting multiple communities using quantum annealing on the D-Wave system , 2019, PloS one.

[52]  Patrick J. Coles,et al.  Impact of Barren Plateaus on the Hessian and Higher Order Derivatives. , 2020 .

[53]  Mauricio Gutierrez,et al.  Simulating the performance of a distance-3 surface code in a linear ion trap , 2017, 1710.01378.

[54]  Rosario Fazio,et al.  Quantum Annealing: a journey through Digitalization, Control, and hybrid Quantum Variational schemes , 2019, 1906.08948.

[55]  U. Brandes,et al.  Maximizing Modularity is hard , 2006, physics/0608255.

[56]  T. Humble,et al.  Benchmarking Adaptive Variational Quantum Eigensolvers , 2020, Frontiers in Chemistry.

[57]  Akira Sone,et al.  Cost-Function-Dependent Barren Plateaus in Shallow Quantum Neural Networks , 2020, ArXiv.

[58]  Andrew T. Sornborger,et al.  Barren Plateaus Preclude Learning Scramblers. , 2020, Physical review letters.

[59]  Alán Aspuru-Guzik,et al.  A variational eigenvalue solver on a photonic quantum processor , 2013, Nature Communications.

[60]  Ilya Safro,et al.  Community Detection Across Emerging Quantum Architectures , 2018, ArXiv.

[61]  Jacob Biamonte,et al.  Abrupt transitions in variational quantum circuit training , 2020, Physical Review A.

[62]  Ilya Safro,et al.  Multilevel Combinatorial Optimization Across Quantum Architectures , 2019, ArXiv.

[63]  André Carlos Ponce de Leon Ferreira de Carvalho,et al.  Spectral methods for graph clustering - A survey , 2011, Eur. J. Oper. Res..

[64]  Emanuel H. Rubensson,et al.  Graph-based linear scaling electronic structure theory. , 2016, The Journal of chemical physics.

[65]  Roman Schutski,et al.  Tensor Network Quantum Simulator With Step-Dependent Parallelization. , 2020 .

[66]  Kristan Temme,et al.  Error mitigation extends the computational reach of a noisy quantum processor , 2019, Nature.

[67]  J. McClean,et al.  Strategies for quantum computing molecular energies using the unitary coupled cluster ansatz , 2017, Quantum Science and Technology.

[68]  Keisuke Fujii,et al.  Sequential minimal optimization for quantum-classical hybrid algorithms , 2019, Physical Review Research.

[69]  E. Farhi,et al.  A Quantum Approximate Optimization Algorithm , 2014, 1411.4028.

[70]  Robert Koenig,et al.  Obstacles to State Preparation and Variational Optimization from Symmetry Protection. , 2019, 1910.08980.

[71]  Nicholas J. Mayhall,et al.  Efficient symmetry-preserving state preparation circuits for the variational quantum eigensolver algorithm , 2019, npj Quantum Information.

[72]  Masoud Mohseni,et al.  Learning to learn with quantum neural networks via classical neural networks , 2019, ArXiv.

[73]  Ivano Tavernelli,et al.  Gate-Efficient Simulation of Molecular Eigenstates on a Quantum Computer , 2018, Physical Review Applied.

[74]  R. Albert,et al.  The large-scale organization of metabolic networks , 2000, Nature.

[75]  John Preskill,et al.  Quantum Computing in the NISQ era and beyond , 2018, Quantum.

[76]  Roman Orus,et al.  A Practical Introduction to Tensor Networks: Matrix Product States and Projected Entangled Pair States , 2013, 1306.2164.

[77]  H. Neven,et al.  Quantum Algorithms for Fixed Qubit Architectures , 2017, 1703.06199.