Design and analysis of ADER-type schemes for model advection-diffusion-reaction equations

Abstract We construct, analyze and assess various schemes of second order of accuracy in space and time for model advection–diffusion–reaction differential equations. The constructed schemes are meant to be of practical use in solving industrial problems and are derived following two related approaches, namely ADER and MUSCL-Hancock. Detailed analysis of linear stability and local truncation error are carried out. In addition, the schemes are implemented and assessed for various test problems. Empirical convergence rate studies confirm the theoretically expected accuracy in both space and time.

[1]  E. Toro Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .

[2]  Claus-Dieter Munz,et al.  A contribution to the construction of diffusion fluxes for finite volume and discontinuous Galerkin schemes , 2007, J. Comput. Phys..

[3]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[4]  S. Osher,et al.  Uniformly high order accurate essentially non-oscillatory schemes, 111 , 1987 .

[5]  B. V. Leer,et al.  Towards the Ultimate Conservative Difference Scheme , 1997 .

[6]  Alfredo Bermúdez,et al.  A projection hybrid finite volume/element method for low-Mach number flows , 2014, J. Comput. Phys..

[7]  P. Lax,et al.  Systems of conservation laws , 1960 .

[8]  P. Raviart,et al.  Numerical Approximation of Hyperbolic Systems of Conservation Laws , 1996, Applied Mathematical Sciences.

[9]  Javier Murillo,et al.  Improved Riemann solvers for complex transport in two-dimensional unsteady shallow flow , 2011, J. Comput. Phys..

[10]  Eleuterio F. Toro,et al.  Analysis of ADER and ADER-WAF schemes , 2006 .

[11]  Yousef Hashem Zahran,et al.  Central ADER schemes for hyperbolic conservation laws , 2008 .

[12]  Eleuterio F. Toro,et al.  ADER finite volume schemes for nonlinear reaction--diffusion equations , 2009 .

[13]  Michael Dumbser,et al.  Arbitrary high order PNPM schemes on unstructured meshes for the compressible Navier–Stokes equations , 2010 .

[14]  L. Cea,et al.  Analysis of a new Kolgan-type scheme motivated by the shallow water equations , 2012 .

[15]  Yoko Takakura,et al.  Direct-expansion forms of ADER schemes for conservation laws and their verification , 2006, J. Comput. Phys..

[16]  P. Lax Hyperbolic systems of conservation laws II , 1957 .

[17]  Christophe Berthon,et al.  Why the MUSCL–Hancock Scheme is L1-stable , 2006, Numerische Mathematik.

[18]  R. LeVeque Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .

[19]  Eleuterio F. Toro,et al.  Reformulations for general advection-diffusion-reaction equations and locally implicit ADER schemes , 2014, J. Comput. Phys..

[20]  E. Toro Godunov Methods: Theory and Applications , 2001 .

[21]  Michael Dumbser,et al.  A direct Arbitrary-Lagrangian-Eulerian ADER-WENO finite volume scheme on unstructured tetrahedral meshes for conservative and non-conservative hyperbolic systems in 3D , 2014, J. Comput. Phys..

[22]  Julio Hernández,et al.  High‐order finite volume schemes for the advection–diffusion equation , 2002 .

[23]  João M. Nóbrega,et al.  A sixth-order finite volume method for multidomain convection–diffusion problem with discontinuous coefficients , 2013 .

[24]  V. P. Kolgan,et al.  Application of the principle of minimizing the derivative to the construction of finite-difference schemes for computing discontinuous solutions of gas dynamics , 2011, J. Comput. Phys..

[25]  P. Colella Multidimensional upwind methods for hyperbolic conservation laws , 1990 .

[26]  Eleuterio F. Toro,et al.  Advection-Diffusion-Reaction Equations: Hyperbolization and High-Order ADER Discretizations , 2014, SIAM J. Sci. Comput..

[27]  Eleuterio F. Toro,et al.  ADER schemes for scalar non-linear hyperbolic conservation laws with source terms in three-space dimensions , 2005 .

[28]  Eleuterio F. Toro,et al.  Towards Very High Order Godunov Schemes , 2001 .

[29]  Bram van Leer,et al.  On the Relation Between the Upwind-Differencing Schemes of Godunov, Engquist–Osher and Roe , 1984 .

[30]  Eleuterio F. Toro,et al.  ADER schemes for three-dimensional non-linear hyperbolic systems , 2005 .

[31]  Stéphane Clain,et al.  A very high-order finite volume method for the time-dependent convection-diffusion problem with Butcher Tableau extension , 2014, Comput. Math. Appl..

[32]  S. Osher,et al.  Weighted essentially non-oscillatory schemes , 1994 .

[33]  Michael Dumbser,et al.  The Derivative Riemann Problem: The basis for high order ADER Schemes , 2006 .

[34]  Eleuterio F. Toro,et al.  Derivative Riemann solvers for systems of conservation laws and ADER methods , 2006, J. Comput. Phys..

[35]  Michael Dumbser,et al.  ADER discontinuous Galerkin schemes for aeroacoustics , 2005 .

[36]  S. Osher,et al.  Regular ArticleUniformly High Order Accurate Essentially Non-oscillatory Schemes, III , 1997 .

[37]  V. A. Titarev,et al.  ADER schemes for hyperbolic conservation laws with reactive terms , 2006 .

[38]  Eleuterio F. Toro,et al.  Solvers for the high-order Riemann problem for hyperbolic balance laws , 2008, J. Comput. Phys..

[39]  M. Elena Vázquez-Cendón Solving Hyperbolic Equations with Finite Volume Methods , 2015 .

[40]  Clinton P. T. Groth,et al.  High-order solution-adaptive central essentially non-oscillatory (CENO) method for viscous flows , 2011, J. Comput. Phys..

[41]  J. Strikwerda Finite Difference Schemes and Partial Differential Equations, Second Edition , 2004 .

[42]  J. Strikwerda Finite Difference Schemes and Partial Differential Equations , 1989 .

[43]  Eleuterio F. Toro,et al.  TVD Fluxes for the High-Order ADER Schemes , 2005, J. Sci. Comput..

[44]  K. Hoffmann,et al.  Computational Fluid Dynamics for Engineers , 1989 .

[45]  P. Sweby High Resolution Schemes Using Flux Limiters for Hyperbolic Conservation Laws , 1984 .

[46]  C. Ollivier-Gooch,et al.  A high-order-accurate unstructured mesh finite-volume scheme for the advection-diffusion equation , 2002 .

[47]  Michael Dumbser,et al.  ADER Schemes for Nonlinear Systems of Stiff Advection–Diffusion–Reaction Equations , 2011, J. Sci. Comput..

[48]  Vladimir Titarev,et al.  Derivative Riemann problem and ADER schemes , 2005 .

[49]  Michael Dumbser,et al.  Well-Balanced High-Order Centred Schemes for Non-Conservative Hyperbolic Systems. Applications to Shallow Water Equations with Fixed and Mobile Bed , 2009 .