Universality of level correlation function of sparse random matrices

The statistical properties of sparse random matrices ensembles are investigated by means of a supersymmetric approach with the use of a functional generalization of the Hubbard-Stratonovich transformation. When used to calculate the density of states the method is shown to be absolutely equivalent to the replica trick. The model turns out to bear a close resemblance to the Anderson model on the Bethe lattice: it possesses a delocalization transition that occurs with an increase in the 'mean connectivity' parameter. In the delocalized phase the level-level correlation function proves to have a universal (Dyson) form with the full density of states replaced by the contribution from the infinite cluster.

[1]  E. Wigner,et al.  On the statistical distribution of the widths and spacings of nuclear resonance levels , 1951, Mathematical Proceedings of the Cambridge Philosophical Society.

[2]  M. L. Mehta,et al.  ON THE DENSITY OF EIGENVALUES OF A RANDOM MATRIX , 1960 .

[3]  F. Dyson Statistical Theory of the Energy Levels of Complex Systems. I , 1962 .

[4]  P. B. Kahn,et al.  Higher Order Spacing Distributions for a Class of Unitary Ensembles , 1964 .

[5]  F. Dyson Correlations between eigenvalues of a random matrix , 1970 .

[6]  F. Dyson A Class of Matrix Ensembles , 1972 .

[7]  P. Anderson,et al.  A selfconsistent theory of localization , 1973 .

[8]  A. Pandey Statistical properties of many-particle spectra. IV. New ensembles by Stieltjes transform methods☆ , 1981 .

[9]  P. A. Mello,et al.  Random matrix physics: Spectrum and strength fluctuations , 1981 .

[10]  M. Berry Quantizing a classically ergodic system: Sinai's billiard and the KKR method , 1981 .

[11]  K. Efetov Supersymmetry and theory of disordered metals , 1983 .

[12]  L. Cederbaum,et al.  On the statistical behaviour of molecular vibronic energy levels , 1983 .

[13]  The localization transition on the Bethe lattice , 1983 .

[14]  E. Gardner,et al.  The Laplacian on a random one-dimensional lattice , 1984 .

[15]  J. Verbaarschot,et al.  Grassmann integration in stochastic quantum physics: The case of compound-nucleus scattering , 1985 .

[16]  A. Bray,et al.  Phase diagrams for dilute spin glasses , 1985 .

[17]  M. Berry,et al.  Semiclassical theory of spectral rigidity , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[18]  Jacobus J. M. Verbaarschot,et al.  Critique of the replica trick , 1985 .

[19]  P. Anderson,et al.  Application of statistical mechanics to NP-complete problems in combinatorial optimisation , 1986 .

[20]  T. Seligman,et al.  Quantum Chaos and Statistical Nuclear Physics , 1986 .

[21]  M. Zirnbauer Anderson localization and non-linear sigma model with graded symmetry , 1986 .

[22]  M. Mézard,et al.  A replica analysis of the travelling salesman problem , 1986 .

[23]  Yoseph Imry,et al.  Active Transmission Channels and Universal Conductance Fluctuations , 1986 .

[24]  M. Zirnbauer,et al.  Localization transition on the Bethe lattice. , 1986, Physical review. B, Condensed matter.

[25]  M. Ibarra,et al.  Thermal expansion and forced volume magnetostriction in DyAl2 , 1986 .

[26]  Kanter,et al.  Mean-field theory of spin-glasses with finite coordination number. , 1987, Physical review letters.

[27]  M. Mézard,et al.  Mean-field theory of randomly frustrated systems with finite connectivity , 1987 .

[28]  Stone,et al.  Random-matrix theory and universal statistics for disordered quantum conductors. , 1987, Physical review letters.

[29]  Imry,et al.  Energy-level correlation function and ac conductivity of a finite disordered system. , 1987, Physical review. B, Condensed matter.

[30]  Replica symmetric solutions in the Ising spin glass: the tree approximation , 1987 .

[31]  D. Sherrington,et al.  Graph bipartitioning and the Bethe spin glass , 1987 .

[32]  Rodgers,et al.  Dynamics of random Ising ferromagnets in the Griffiths phase. , 1988, Physical review. B, Condensed matter.

[33]  Wise,et al.  Universality of random-matrix predictions for the statistics of energy levels. , 1988, Physical review letters.

[34]  J. Pichard,et al.  Random matrix theory and universal statistics for disordered quantum conductors with spin-dependent hopping , 1988 .

[35]  J. Verbaarschot Graded symmetry and Anderson localization on the Bethe lattice for time-reversal invariant systems , 1988 .

[36]  Sommers,et al.  Spectrum of large random asymmetric matrices. , 1988, Physical review letters.

[37]  Rodgers,et al.  Density of states of a sparse random matrix. , 1988, Physical review. B, Condensed matter.

[38]  Evangelou Sn Universal energy-level statistics for disordered metals. , 1989 .

[39]  Politzer,et al.  Random-matrix description of the distribution of mesoscopic conductance. , 1989, Physical review. B, Condensed matter.

[40]  G. J. Rodgers,et al.  Density of states of sparse random matrices , 1990 .

[41]  S. Iida,et al.  Statistical scattering theory, the supersymmetry method and universal conductance fluctuations , 1990 .

[42]  Y. Fyodorov,et al.  On the density of states of sparse random matrices , 1991 .

[43]  A. Altland Conductance and conductance fluctuations of mesoscopic systems with different symmetries: a statistical scattering theory approach , 1991 .