Parareal operator splitting techniques for multi-scale reaction waves: Numerical analysis and strategies
暂无分享,去创建一个
[1] Irving R. Epstein,et al. An Introduction to Nonlinear Chemical Dynamics: Oscillations, Waves, Patterns, and Chaos , 1998 .
[2] Yvon Maday,et al. A Parareal in Time Semi-implicit Approximation of the Navier-Stokes Equations , 2005 .
[3] Marc Massot,et al. Operator splitting for nonlinear reaction-diffusion systems with an entropic structure : singular perturbation and order reduction , 2004, Numerische Mathematik.
[4] L. Shampine,et al. RKC: an explicit solver for parabolic PDEs , 1998 .
[5] Christian Lubich,et al. On splitting methods for Schrödinger-Poisson and cubic nonlinear Schrödinger equations , 2008, Math. Comput..
[6] J. Brandts. [Review of: W. Hundsdorfer, J.G. Verwer (2003) Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations] , 2006 .
[7] R. Temam. Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires (II) , 1969 .
[8] Dwight Barkley,et al. Fast Simulations of Waves in Three-Dimensional Excitable Media , 1997 .
[9] Yves D'Angelo,et al. Comparison and analysis of some numerical schemes for stiff complex chemistry problems , 1995 .
[10] Marc Massot,et al. Simulation of human ischemic stroke in realistic 3D geometry , 2010, Commun. Nonlinear Sci. Numer. Simul..
[11] G. Strang. On the Construction and Comparison of Difference Schemes , 1968 .
[12] Marc Massot,et al. New Resolution Strategy for Multiscale Reaction Waves using Time Operator Splitting, Space Adaptive Multiresolution, and Dedicated High Order Implicit/Explicit Time Integrators , 2012, SIAM J. Sci. Comput..
[13] Yvon Maday,et al. The Parareal in Time Iterative Solver: a Further Direction to Parallel Implementation , 2005 .
[14] P. Deuflhard. A modified Newton method for the solution of ill-conditioned systems of nonlinear equations with application to multiple shooting , 1974 .
[15] N. N. I︠A︡nenko. The Method of Fractional Steps: The Solution of Problems of Mathematical Physics in Several Variables , 1971 .
[16] R. Temam. Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires (I) , 1969 .
[17] Y. Maday,et al. A parareal in time procedure for the control of partial differential equations , 2002 .
[18] Magne S. Espedal,et al. A Convergent Algorithm for Time Parallelization Applied to Reservoir Simulation , 2005 .
[19] J. Lions,et al. Résolution d'EDP par un schéma en temps « pararéel » , 2001 .
[20] Gilbert Strang,et al. Accurate partial difference methods , 1964 .
[21] Stéphane Descombes,et al. A numerical study of the blocking of migraine by Rolando sulcus. , 2008, Progress in biophysics and molecular biology.
[22] Suleyman A. Gokoglu,et al. Significance of vapor phase chemical reactions on CVD rates predicted by chemically frozen and local thermochemical equilibrium boundary layer theories , 1988 .
[23] A. Volpert,et al. Traveling Wave Solutions of Parabolic Systems: Translations of Mathematical Monographs , 1994 .
[24] Habib N. Najm,et al. Modeling Low Mach Number Reacting Flow with Detailed Chemistry and Transport , 2005, J. Sci. Comput..
[25] Pu Sun. A Pseudo-Non-Time-Splitting Method in Air Quality Modeling , 1996 .
[26] Charalambos Makridakis,et al. Implicit-explicit multistep finite element methods for nonlinear parabolic problems , 1998, Math. Comput..
[27] M S Day,et al. Numerical simulation of laminar reacting flows with complex chemistry , 2000 .
[28] Vitaly Volpert,et al. Traveling Wave Solutions of Parabolic Systems , 1994 .
[29] S. SIAMJ.,et al. FOURTH ORDER CHEBYSHEV METHODS WITH RECURRENCE RELATION∗ , 2002 .
[30] Y. Maday,et al. A “Parareal” Time Discretization for Non-Linear PDE’s with Application to the Pricing of an American Put , 2002 .
[31] M. Smooke,et al. Error estimate for the modified Newton method with applications to the solution of nonlinear, two-point boundary-value problems , 1983 .
[32] G. Marchuk. Splitting and alternating direction methods , 1990 .
[33] Izaskun Garrido Hernandez,et al. Convergent iterative schemes for time parallelization , 2006, Math. Comput..
[34] Martin J. Gander,et al. Nonlinear Convergence Analysis for the Parareal Algorithm , 2008 .
[35] E. Hairer,et al. Solving Ordinary Differential Equations I , 1987 .
[36] J. Verwer,et al. Numerical solution of time-dependent advection-diffusion-reaction equations , 2003 .
[37] Stéphane Descombes,et al. Strang's formula for holomorphic semi-groups , 2002 .
[38] M. Markus,et al. On-off intermittency and intermingledlike basins in a granular medium. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.
[39] E. Hairer,et al. Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .
[40] Bernard Philippe,et al. A parallel shooting technique for solving dissipative ODE's , 1993, Computing.
[41] L. Reichl,et al. An Introduction to Nonlinear Chemical Dynamics: Oscillations, Waves, Patterns, and Chaos By Irving R. Epstein (Brandeis University) and John A. Pojman (University of S. Mississippi). Oxford University Press: New York. 1998. 408 pp. $75.00. ISBN 0-19-509670-3. , 2000 .
[42] Willem Hundsdorfer,et al. RKC time-stepping for advection-diffusion-reaction problems , 2004 .
[43] Bruno Sportisse,et al. Reduction of chemical kinectics in air pollution modeling , 2000 .
[44] Jan G. Verwer,et al. An Implicit-Explicit Runge-Kutta-Chebyshev Scheme for Diffusion-Reaction Equations , 2004, SIAM J. Sci. Comput..
[45] Lawrence F. Shampine,et al. IRKC: an IMEX solver for stiff diffusion-reaction PDEs , 2005 .
[46] I. Epstein,et al. An Introduction to Nonlinear Chemical Dynamics , 1998 .
[47] Stéphane Descombes,et al. On the local and global errors of splitting approximations of reaction–diffusion equations with high spatial gradients , 2007, Int. J. Comput. Math..
[48] Stéphane Descombes,et al. Convergence of a splitting method of high order for reaction-diffusion systems , 2001, Math. Comput..
[49] P. S. Wyckoff,et al. A Semi-implicit Numerical Scheme for Reacting Flow , 1998 .
[50] Bruno Sportisse. Contribution a la modelisation des ecoulements reactifs : reduction des modeles de cinetique chimique et simulation de la pollution atmospherique , 1999 .
[51] J. Verwer,et al. A note on operator splitting in a stiff linear case , 1998 .
[52] Seog Yeon Cho,et al. Computation accuracy and efficiency of the time-splitting method in solving atmospheric transport/chemistry equations , 1997 .
[53] Thierry Dumont,et al. Numerical simulation of a stroke: computational problems and methodology. , 2008, Progress in biophysics and molecular biology.
[54] N. N. Yanenko,et al. The Method of Fractional Steps , 1971 .
[55] B. Sportisse. An Analysis of Operator Splitting Techniques in the Stiff Case , 2000 .
[56] Charbel Farhat,et al. Time‐decomposed parallel time‐integrators: theory and feasibility studies for fluid, structure, and fluid–structure applications , 2003 .
[57] E. Hairer,et al. Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .
[58] Marc Massot,et al. Singular perturbation analysis for the reduction of complex chemistry in gaseous mixtures using the entropic structure , 2002 .
[59] Tarek Echekki,et al. Topical review: Multiscale methods in turbulent combustion: strategies and computational challenges , 2009 .
[60] Einar M. Rønquist,et al. Stability of the Parareal Algorithm , 2005 .
[61] Yves d'Angelo. Analyse et simulation numérique de phénomènes liés à la combustion supersonique , 1994 .
[62] Y Maday,et al. Parallel-in-time molecular-dynamics simulations. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.
[63] William R. Goodin,et al. Numerical solution of the atmospheric diffusion equation for chemically reacting flows , 1982 .
[64] W. Skaggs,et al. Chemical vortex dynamics in the Belousov-Zhabotinskii reaction and in the two-variable oregonator model , 1989 .
[65] Michelle Schatzman,et al. Toward Non Commutative Numerical Analysis: High Order Integration in Time , 2002, J. Sci. Comput..
[66] Martin J. Gander,et al. Analysis of the Parareal Time-Parallel Time-Integration Method , 2007, SIAM J. Sci. Comput..
[67] Guillaume Bal,et al. On the Convergence and the Stability of the Parareal Algorithm to Solve Partial Differential Equations , 2005 .
[68] D. Barkley. A model for fast computer simulation of waves in excitable media , 1991 .
[69] Peter Deuflhard,et al. Newton Methods for Nonlinear Problems , 2004 .
[70] V. Giovangigli. Multicomponent flow modeling , 1999 .
[71] G. Strang. Accurate partial difference methods I: Linear cauchy problems , 1963 .
[72] P. Deuflhard. Newton Methods for Nonlinear Problems: Affine Invariance and Adaptive Algorithms , 2011 .
[73] Habib N. Najm,et al. Regular Article: A Semi-implicit Numerical Scheme for Reacting Flow , 1999 .
[74] E. Hairer,et al. Geometric Numerical Integration , 2022, Oberwolfach Reports.