Symmetry‐adapted perturbation theory based on density functional theory for noncovalent interactions
暂无分享,去创建一个
[1] G. Jansen,et al. A comparison of the solid-state structures of halogen azides XN3 (X=Cl, Br, I). , 2012, Angewandte Chemie.
[2] Intermolecular Interactions via Perturbation Theory : From Diatoms to Biomolecules , 2005 .
[3] Andreas Heßelmann. Die Berechnung von intermolekularen Wechselwirkungsbeiträgen mit Dichtefunktional- und Brueckner-Coupled-Cluster-Methoden , 2003 .
[4] A. Stone,et al. Charge-transfer in Symmetry-Adapted Perturbation Theory , 2009 .
[5] F. Manby,et al. Efficient exact exchange approximations in density-functional theory. , 2005, The Journal of chemical physics.
[6] Georg Jansen,et al. Interaction energy contributions of H-bonded and stacked structures of the AT and GC DNA base pairs from the combined density functional theory and intermolecular perturbation theory approach. , 2006, Journal of the American Chemical Society.
[7] M. Petersilka,et al. DENSITY FUNCTIONAL THEORY OF TIME-DEPENDENT PHENOMENA , 1996 .
[8] C. Almbladh,et al. Exact results for the charge and spin densities, exchange-correlation potentials, and density-functional eigenvalues. , 1985, Physical review. B, Condensed matter.
[9] Georg Jansen,et al. The helium dimer potential from a combined density functional theory and symmetry-adapted perturbation theory approach using an exact exchange–correlation potential , 2003 .
[10] Georg Jansen,et al. Intermolecular dispersion energies from time-dependent density functional theory , 2003 .
[11] Georg Jansen,et al. How accurate is the density functional theory combined with symmetry-adapted perturbation theory approach for CH-pi and pi-pi interactions? A comparison to supermolecular calculations for the acetylene-benzene dimer. , 2007, Physical chemistry chemical physics : PCCP.
[12] Pavel Hobza,et al. Stabilization and structure calculations for noncovalent interactions in extended molecular systems based on wave function and density functional theories. , 2010, Chemical reviews.
[13] A. Görling,et al. Efficient localized Hartree-Fock methods as effective exact-exchange Kohn-Sham methods for molecules , 2001 .
[14] Stanisl,et al. Many‐body symmetry‐adapted perturbation theory of intermolecular interactions. H2O and HF dimers , 1991 .
[15] P. Żuchowski,et al. A density functional theory approach to noncovalent interactions via interacting monomer densities. , 2010, Physical chemistry chemical physics : PCCP.
[16] K. Szalewicz,et al. Symmetry forcing and convergence properties of perturbation expansions for molecular interaction energies , 1978 .
[17] K. Szalewicz,et al. Perturbation theory calculations of intermolecular interaction energies , 1991 .
[18] Evert Jan Baerends,et al. Shape corrections to exchange-correlation potentials by gradient-regulated seamless connection of model potentials for inner and outer region , 2001 .
[19] Krzysztof Szalewicz,et al. Symmetry‐adapted perturbation theory of intermolecular forces , 2012 .
[20] M. Schütz,et al. Density-functional theory-symmetry-adapted intermolecular perturbation theory with density fitting: a new efficient method to study intermolecular interaction energies. , 2005, The Journal of chemical physics.
[21] E. Engel,et al. Asymptotic properties of the exchange energy density and the exchange potential of finite systems: relevance for generalized gradient approximations , 1992 .
[22] Krzysztof Szalewicz,et al. Symmetry-adapted perturbation theory utilizing density functional description of monomers for high-spin open-shell complexes. , 2008, The Journal of chemical physics.
[23] K. Patkowski. On the accuracy of explicitly correlated coupled-cluster interaction energies--have orbital results been beaten yet? , 2012, The Journal of chemical physics.
[24] G. Jansen,et al. Competition between H···π and H···O interactions in furan heterodimers. , 2012, The journal of physical chemistry. A.
[25] P. Żuchowski,et al. Density functional theory approach to noncovalent interactions via monomer polarization and Pauli blockade. , 2009, Physical review letters.
[26] R. Parr. Density-functional theory of atoms and molecules , 1989 .
[27] Tatiana Korona,et al. Electrostatic interactions between molecules from relaxed one-electron density matrices of the coupled cluster singles and doubles model , 2002 .
[28] Krzysztof Szalewicz,et al. Dispersion energy from density-functional theory description of monomers. , 2003, Physical review letters.
[29] J. Perdew,et al. Density-Functional Theory for Fractional Particle Number: Derivative Discontinuities of the Energy , 1982 .
[30] R. Podeszwa,et al. Efficient Calculations of Dispersion Energies for Nanoscale Systems from Coupled Density Response Functions. , 2012, Journal of chemical theory and computation.
[31] K. Szalewicz,et al. Orbital relaxation and the third-order induction energy in symmetry-adapted perturbation theory , 2010 .
[32] C. David Sherrill,et al. Wavefunction methods for noncovalent interactions , 2012 .
[33] Jan Řezáč,et al. Extrapolation and Scaling of the DFT-SAPT Interaction Energies toward the Basis Set Limit. , 2011, Journal of chemical theory and computation.
[34] Robert M Parrish,et al. Large-scale symmetry-adapted perturbation theory computations via density fitting and Laplace transformation techniques: investigating the fundamental forces of DNA-intercalator interactions. , 2011, The Journal of chemical physics.
[35] F. London,et al. The general theory of molecular forces , 1937 .
[36] C. David Sherrill,et al. Density fitting and Cholesky decomposition approximations in symmetry-adapted perturbation theory: Implementation and application to probe the nature of π-π interactions in linear acenes , 2010 .
[37] Krzysztof Szalewicz,et al. Potential energy surface for the benzene dimer and perturbational analysis of π-π interactions , 2006 .
[38] S. F. Boys,et al. The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors , 1970 .
[39] Evert Jan Baerends,et al. Density-functional-theory response-property calculations with accurate exchange-correlation potentials , 1998 .
[40] R. Moszynski. SAPT A Program for Many Body Symmetry Adapted Perturbation Theory Calculations of Intermolecular Interaction Energies , 2007 .
[41] K. Szalewicz,et al. Helium dimer potential from symmetry-adapted perturbation theory calculations using large Gaussian geminal and orbital basis sets , 1997 .
[42] N. Rösch,et al. Density- and density-matrix-based coupled Kohn–Sham methods for dynamic polarizabilities and excitation energies of molecules , 1999 .
[43] M. Szczęśniak,et al. Dispersion-free component of non-covalent interaction via mutual polarization of fragment densities. , 2012, The Journal of chemical physics.
[44] Tatiana Korona,et al. One-electron properties and electrostatic interaction energies from the expectation value expression and wave function of singles and doubles coupled cluster theory. , 2006, The Journal of chemical physics.
[45] M. E. Casida. Time-Dependent Density Functional Response Theory for Molecules , 1995 .
[46] Krzysztof Szalewicz,et al. Efficient calculation of coupled Kohn-Sham dynamic susceptibility functions and dispersion energies with density fitting , 2005 .
[47] Georg Jansen,et al. First-order intermolecular interaction energies from Kohn–Sham orbitals , 2002 .
[48] W. Kutzelnigg. The ‘‘primitive’’ wave function in the theory of intermolecular interactions , 1980 .
[49] Tatiana Korona,et al. Dispersion energy from density-fitted density susceptibilities of singles and doubles coupled cluster theory. , 2008, The Journal of chemical physics.
[50] Georg Jansen,et al. Single-determinant-based symmetry-adapted perturbation theory without single-exchange approximation , 2013 .
[51] B. Rice,et al. Predicting structure of molecular crystals from first principles. , 2008, Physical review letters.
[52] T. Heijmen,et al. Symmetry-adapted perturbation theory for the calculation of Hartree-Fock interaction energies , 1996 .
[53] B. Jeziorski,et al. Exchange polarization effects in the interaction of closed-shell systems , 1977 .
[54] R. Podeszwa,et al. Accurate interaction energies for argon, krypton, and benzene dimers from perturbation theory based on the Kohn–Sham model , 2005 .
[55] P. Żuchowski. Interaction potential for the quintet state of the O2–O2 dimer from symmetry-adapted perturbation theory based on DFT description of monomers , 2008 .
[56] R. Podeszwa,et al. Interactions of graphene sheets deduced from properties of polycyclic aromatic hydrocarbons. , 2010, The Journal of chemical physics.
[57] J. D. Morgan,et al. Behavior of molecular potential energy curves for large nuclear separations , 1980 .
[58] Edward G Hohenstein,et al. Efficient evaluation of triple excitations in symmetry-adapted perturbation theory via second-order Møller-Plesset perturbation theory natural orbitals. , 2010, The Journal of chemical physics.
[59] Olivier Jacquet,et al. Cover Picture: A Diagonal Approach to Chemical Recycling of Carbon Dioxide: Organocatalytic Transformation for the Reductive Functionalization of CO2 (Angew. Chem. Int. Ed. 1/2012) , 2012 .
[60] Tatiana Korona,et al. Exchange-Dispersion Energy: A Formulation in Terms of Monomer Properties and Coupled Cluster Treatment of Intramonomer Correlation. , 2009, Journal of chemical theory and computation.
[61] T. Korona. On the role of higher-order correlation effects on the induction interactions between closed-shell molecules. , 2007, Physical chemistry chemical physics : PCCP.
[62] Matthew L. Leininger,et al. Psi4: an open‐source ab initio electronic structure program , 2012 .
[63] A. Lembarki,et al. Gradient-corrected exchange potential with the correct asymptotic behavior and the corresponding exchange-energy functional obtained from the virial theorem. , 1995, Physical review. A, Atomic, molecular, and optical physics.
[64] Edward G Hohenstein,et al. Density fitting of intramonomer correlation effects in symmetry-adapted perturbation theory. , 2010, The Journal of chemical physics.
[65] J. Herbert,et al. Breakdown of the single-exchange approximation in third-order symmetry-adapted perturbation theory. , 2012, The journal of physical chemistry. A.
[66] A. Hesselmann. Improved supermolecular second order Møller-Plesset intermolecular interaction energies using time-dependent density functional response theory. , 2008, The Journal of chemical physics.
[67] G. Jansen,et al. First principles potential for the acetylene dimer and refinement by fitting to experiments. , 2011, The Journal of chemical physics.
[68] Georg Jansen,et al. Intermolecular exchange-induction energies without overlap expansion , 2012, Theoretical Chemistry Accounts.
[69] G. Jansen,et al. Solid-state structure of bromine azide. , 2012, Angewandte Chemie.
[70] V. Barone,et al. Toward reliable density functional methods without adjustable parameters: The PBE0 model , 1999 .
[71] G. Jansen,et al. Intermolecular interactions in weak donor-acceptor complexes from symmetry-adapted perturbation and coupled-cluster theory: tetracyanoethylene-benzene and tetracyanoethylene-p-xylene. , 2012, Chemphyschem : a European journal of chemical physics and physical chemistry.
[72] John P. Perdew,et al. Exact differential equation for the density and ionization energy of a many-particle system , 1984 .
[73] P. Żuchowski,et al. Symmetry-adapted perturbation theory based on unrestricted Kohn-Sham orbitals for high-spin open-shell van der Waals complexes. , 2012, The Journal of chemical physics.
[74] R. Crespo‐Otero,et al. Ab initio and matrix isolation study of the acetylene–furan dimer , 2008 .
[75] K. Szalewicz,et al. Third-order interactions in symmetry-adapted perturbation theory. , 2006, The Journal of chemical physics.
[76] G. Scuseria,et al. Prescription for the design and selection of density functional approximations: more constraint satisfaction with fewer fits. , 2005, The Journal of chemical physics.
[77] Robert Moszynski,et al. Perturbation Theory Approach to Intermolecular Potential Energy Surfaces of van der Waals Complexes , 1994 .
[78] E. Gross,et al. Time-dependent density functional theory. , 2004, Annual review of physical chemistry.
[79] R. Dreizler,et al. Density Functional Theory: An Approach to the Quantum Many-Body Problem , 1991 .
[80] H. Zimmermann,et al. Rotational motion in the molecular crystals meta- and ortho-carborane studied by deuteron nuclear magnetic resonance. , 2005, The Journal of chemical physics.
[81] Annamaria Fiethen,et al. Stacking energies for average B-DNA structures from the combined density functional theory and symmetry-adapted perturbation theory approach. , 2008, Journal of the American Chemical Society.
[82] R. Podeszwa,et al. Three-body symmetry-adapted perturbation theory based on Kohn-Sham description of the monomers. , 2007, The Journal of chemical physics.
[83] D. Levandier,et al. H2+(X,v+=0~15,N+=1)+Heプロトン移動反応のパルス電界イオン化光電子二次イオンコインシデンス研究 , 2005 .
[84] C. Chabalowski,et al. Using Kohn−Sham Orbitals in Symmetry-Adapted Perturbation Theory to Investigate Intermolecular Interactions , 2001 .
[85] K. Szalewicz,et al. On the effectiveness of monomer‐, dimer‐, and bond‐centered basis functions in calculations of intermolecular interaction energies , 1995 .
[86] R. Mcweeny,et al. Time-dependent Hartree-Fock calculations of dispersion energy , 1985 .
[87] Tatiana Korona,et al. Second-order exchange-induction energy of intermolecular interactions from coupled cluster density matrices and their cumulants. , 2008, Physical chemistry chemical physics : PCCP.
[88] P. Wormer,et al. New CO-CO interaction potential tested by rovibrational calculations. , 2005, The Journal of chemical physics.
[89] W. Adams,et al. Definition of eigenproblems suited to intermolecular perturbation theory , 1999 .
[90] J. Rowlinson. Cohesion: Subject index , 2002 .
[91] J. S. Rowlinson,et al. Cohesion: A Scientific History of Intermolecular Forces , 2002 .
[92] T. Korona. Coupled Cluster Treatment Of Intramonomer Correlation Effects In Intermolecular Interactions , 2010 .
[93] R. Leeuwen,et al. Exchange-correlation potential with correct asymptotic behavior. , 1994, Physical review. A, Atomic, molecular, and optical physics.
[94] Burke,et al. Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.
[95] Pavel Hobza,et al. Noncovalent interactions in biochemistry , 2011 .
[96] J. Perdew. Size-Consistency, Self-Interaction Correction, and Derivative Discontinuity in Density Functional Theory , 1990 .
[97] L. J. Schaad,et al. Deviations from Pairwise Additivity in Intermolecular Potentials , 1967 .
[98] K. Szalewicz,et al. On the multipole structure of exchange dispersion energy in the interaction of two helium atoms , 1977 .
[99] C. Chabalowski,et al. Reply to Comment on “Using Kohn−Sham Orbitals in Symmetry-Adapted Perturbation Theory To Investigate Intermolecular Interactions” , 2001 .
[100] Krzysztof Szalewicz,et al. Intermolecular forces from asymptotically corrected density functional description of monomers , 2002 .
[101] L. Piela,et al. First-order perturbation treatment of the short-range repulsion in a system of many closed-shell atoms or molecules , 1976 .
[102] Frank Jensen,et al. Atomic orbital basis sets , 2013 .
[103] Tatiana Korona,et al. A coupled cluster treatment of intramonomer electron correlation within symmetry-adapted perturbation theory: benchmark calculations and a comparison with a density-functional theory description , 2013 .
[104] Krzysztof Szalewicz,et al. Intermolecular potentials based on symmetry-adapted perturbation theory with dispersion energies from time-dependent density-functional calculations. , 2005, The Journal of chemical physics.
[105] Jiří Čížek,et al. Direct calculation of the Hartree–Fock interaction energy via exchange–perturbation expansion. The He … He interaction , 1987 .
[106] Georg Jansen,et al. Intermolecular induction and exchange-induction energies from coupled-perturbed Kohn–Sham density functional theory , 2002 .
[107] R. van Harrevelt,et al. Vibration-rotation-tunneling states of the benzene dimer: an ab initio study. , 2010, Physical chemistry chemical physics : PCCP.
[108] Andreas Heßelmann,et al. Accurate Intermolecular Interaction Energies from a Combination of MP2 and TDDFT Response Theory. , 2010, Journal of chemical theory and computation.
[109] Nicholas C. Handy,et al. Improving virtual Kohn-Sham orbitals and eigenvalues: Application to excitation energies and static polarizabilities , 1998 .
[110] Martin Schütz,et al. Molpro: a general‐purpose quantum chemistry program package , 2012 .
[111] Pavel Hobza,et al. S66: A Well-balanced Database of Benchmark Interaction Energies Relevant to Biomolecular Structures , 2011, Journal of chemical theory and computation.
[112] R. Podeszwa,et al. Density-Fitting Method in Symmetry-Adapted Perturbation Theory Based on Kohn-Sham Description of Monomers , 2006, 2006 HPCMP Users Group Conference (HPCMP-UGC'06).
[113] Henry Margenau,et al. Theory of intermolecular forces , 1969 .
[114] M. Randic,et al. The theory of intermolecular forces in the region of small orbital overlap , 1965, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.
[115] Konrad Patkowski,et al. Portable parallel implementation of symmetry-adapted perturbation theory code , 2006 .
[116] R. Ahlrichs,et al. Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory , 1996 .
[117] P. Claverie. Theory of intermolecular forces. I. On the inadequacy of the usual Rayleigh‐Schrödinger perturbation method for the treatment of intermolecular forces , 1971 .
[118] Tatiana Korona,et al. First-order exchange energy of intermolecular interactions from coupled cluster density matrices and their cumulants. , 2008, The Journal of chemical physics.