A General Conservative Extension Theorem in Process Algebra

We prove a general conservative extension theorem for transition system based process theories with easy-to-check and reasonable conditions. The core of this result is another general theorem which gives sufficient conditions for a system of operational rules and an extension of it in order to ensure conservativity, that is, provable transitions from an original term in the extension are the same as in the original system. As a simple corollary of the conservative extension theorem we prove a completeness theorem. We also prove a general theorem giving sufficient conditions to reduce the question of ground confluence modulo some equations for a large term rewriting system associated with an equational process theory to a small term rewriting system under the condition that the large system is a conservative extension of the small one. We provide many applications to show that our results are useful. The applications include (but are not limited to) various real and discrete time settings in ACP, ATP, and CCS and the notions projection, renaming, stage operator, priority, recursion, the silent step, autonomous actions, the empty process, divergence, etc.

[1]  Joseph Sifakis,et al.  The Algebra of Timed Processes, ATP: Theory and Application , 1994, Inf. Comput..

[2]  Jan A. Bergstra,et al.  Axiomatizing Probabilistic Processes: ACP with Generative Probabilities , 1995, Inf. Comput..

[3]  Erik Poll,et al.  CPO-Models for Second Order Lambda Calculus with Recursive Types and Subtyping , 1993, RAIRO Theor. Informatics Appl..

[4]  Rob J. van Glabbeek,et al.  Branching time and abstraction in bisimulation semantics , 1996, JACM.

[5]  Jan Friso Groote,et al.  Structured Operational Semantics and Bisimulation as a Congruence , 1992, Inf. Comput..

[6]  Robin Milner,et al.  A Complete Inference System for a Class of Regular Behaviours , 1984, J. Comput. Syst. Sci..

[7]  A. S. Klusener,et al.  Models and axioms for a fragment of real time process algebra , 1993 .

[8]  D. J. Walker,et al.  Bisimulation and Divergence , 1990, Inf. Comput..

[9]  P. S. Thiagarajan,et al.  Degrees of Non-Determinism and Concurrency: A Petri Net View , 1984, FSTTCS.

[10]  Robin Milner,et al.  Communication and concurrency , 1989, PHI Series in computer science.

[11]  Chris Verhoef,et al.  Concrete process algebra , 1995, LICS 1995.

[12]  Dick Alstein,et al.  Dynamic reconfiguration in distributed hard real-time systems , 1991 .

[13]  Wolfgang Wechler,et al.  Universal Algebra for Computer Scientists , 1992, EATCS Monographs on Theoretical Computer Science.

[14]  Jan Friso Groote,et al.  The meaning of negative premises in transition system specifications , 1991, JACM.

[15]  Jan Friso Groote,et al.  Transition System Specifications with Negative Premises , 1993, Theor. Comput. Sci..

[16]  Rob J. van Glabbeek,et al.  Bounded Nondeterminism and the Approximation Induction Principle in Process Algebra , 1987, STACS.

[17]  P. D. Moerland,et al.  Exercises in multiprogramming , 1993 .

[18]  D. de Reus,et al.  An implementation model for GOOD , 1991 .

[19]  Marc Voorhoeve,et al.  Process algebra with autonomous actions , 1996 .

[20]  W. Ferrer,et al.  Abstract reduction and topology , 1993 .

[21]  Hans Zantema,et al.  Basic Process Algebra with Iteration: Completeness of its Equational Axioms , 1993, Comput. J..

[22]  Ilaria Castellani,et al.  Observing Distribution in Processes , 1993, MFCS.

[23]  R. J. vanGlabbeek The linear time - branching time spectrum , 1990 .

[24]  Arthur Gill Applied algebra for the computer sciences , 1976 .

[25]  Jan A. Bergstra,et al.  Process Algebra with Iteration and Nesting , 1994, Comput. J..

[26]  Wang Yi,et al.  Real-Time Behaviour of Asynchronous Agents , 1990, CONCUR.

[27]  Rob J. van Glabbeek,et al.  The Linear Time-Branching Time Spectrum (Extended Abstract) , 1990, CONCUR.

[28]  Hans Zantema,et al.  Termination of Term Rewriting by Semantic Labelling , 1995, Fundam. Informaticae.

[29]  BolRoland,et al.  The meaning of negative premises in transition system specifications , 1996 .

[30]  Rob J. van Glabbeek,et al.  Branching Time and Abstraction in Bisimulation Semantics (Extended Abstract) , 1989, IFIP Congress.

[31]  Jan A. Bergstra,et al.  Syntax and defining equations for an interrupt mechanism in process algebra , 1985 .

[32]  Jean-Pierre Jouannaud,et al.  Termination of a Set of Rules Modulo a Set of Equations , 1984, CADE.

[33]  Jan A. Bergstra,et al.  Algebra of Communicating Processes with Abstraction , 1985, Theor. Comput. Sci..

[34]  A. Steven Klusener Completeness in Real Time Process Algebra , 1991, CONCUR.

[35]  Gerard Zwaan,et al.  A taxonomy of keyword pattern matching algorithms , 1992 .

[36]  Luca Aceto,et al.  On Relating Concurency and Nondeterminism , 1991, MFPS.

[37]  Pmp Paul Rambags,et al.  Composition and Decomposition in a CPN Model , 1992 .

[38]  Jos C. M. Baeten,et al.  A Congruence Theorem for Structured Operational Semantics with Predicates , 1993, CONCUR.

[39]  Luca Ace On Relating Concurrency and Nondeterminism * , .

[40]  Samson Abramsky,et al.  Observation Equivalence as a Testing Equivalence , 1987, Theor. Comput. Sci..

[41]  Faron Moller,et al.  A Temporal Calculus of Communicating Systems , 1990, CONCUR.

[42]  van Km Kees Hee,et al.  Systems engineering : a formal approach. Part I. System concepts , 1993 .

[43]  J. W. de Bakker,et al.  Ten Years of Concurrency Semantics; Selected Papers of the Amsterdam Concurrency Group , 1992 .

[44]  Ilaria Castellani,et al.  Concurrency and Atomicity , 1988, Theor. Comput. Sci..

[45]  Rob J. van Glabbeek,et al.  The Linear Time - Branching Time Spectrum II , 1993, CONCUR.

[46]  Fairouz Kamareddine,et al.  Non well-foundedness and type freeness can unify the interpretation of functional application , 1992 .

[47]  Matthew Hennessy,et al.  Algebraic theory of processes , 1988, MIT Press series in the foundations of computing.

[48]  P. S. Thiagarajan,et al.  Degrees of Non-determinism and Concurrency: A Petri Net View , 1984 .

[49]  Erik Poll,et al.  Some categorical properties for a model for second order lambda calculus with subtyping , 1991 .

[50]  Frits W. Vaandrager,et al.  Turning SOS Rules into Equations , 1994, Inf. Comput..

[51]  Wan Fokkink,et al.  A conservative look at term deduction systems with variable binding , 1995 .

[52]  David Park,et al.  Concurrency and Automata on Infinite Sequences , 1981, Theoretical Computer Science.

[53]  Jan A. Bergstra,et al.  Non Interleaving Process Algebra , 1993, CONCUR.

[54]  D. J. B. Bosscher Term Rewriting Properties of SOS Axiomatisations , 1994, TACS.

[55]  R. V. Glabbeek The Linear Time - Branching Time Spectrum II: The Semantics of Sequential Systems with Silent Moves , 1993 .

[56]  Albert R. Meyer,et al.  Bisimulation can't be traced , 1988, POPL '88.

[57]  J. Bergstra,et al.  Fixed point semantics in process algebras : (preprint) , 1982 .

[58]  Chris Verhoef,et al.  A Congruence Theorem for Structured Operational Semantics with Predicates and Negative Premises , 1994, Nord. J. Comput..

[59]  Jan A. Bergstra,et al.  Process Algebra for Synchronous Communication , 1984, Inf. Control..

[60]  G. J. Akkerman,et al.  Term rewriting analysis in process algebra , 1990 .

[61]  Rob J. van Glabbeek,et al.  The meaning of negative premises in transition system specifications II , 1996, J. Log. Algebraic Methods Program..

[62]  A. Meyer,et al.  Bisimulation can't be traced. Preliminary report , 1987 .