Unveiling Temporal Correlations Characteristic of a Phase Transition in the Output Intensity of a Fiber Laser.

We use advanced statistical tools of time-series analysis to characterize the dynamical complexity of the transition to optical wave turbulence in a fiber laser. Ordinal analysis and the horizontal visibility graph applied to the experimentally measured laser output intensity reveal the presence of temporal correlations during the transition from the laminar to the turbulent lasing regimes. Both methods unveil coherent structures with well-defined time scales and strong correlations both, in the timing of the laser pulses and in their peak intensities. Our approach is generic and may be used in other complex systems that undergo similar transitions involving the generation of extreme fluctuations.

[1]  Paul Harper,et al.  Experimental and theoretical study of longitudinal power distribution in a random DFB fiber laser. , 2012, Optics express.

[2]  Niels Wessel,et al.  Classifying cardiac biosignals using ordinal pattern statistics and symbolic dynamics , 2012, Comput. Biol. Medicine.

[3]  B. Luque,et al.  Horizontal visibility graphs: exact results for random time series. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[4]  Emily A. Fogarty,et al.  Visibility network of United States hurricanes , 2009 .

[5]  Electrometry Sb Ras,et al.  Stochasticity, periodicity and localized light structures in partially mode-locked fibre lasers , 2014, Nature Communications.

[6]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[7]  Pierre Suret,et al.  Optical wave turbulence: Towards a unified nonequilibrium thermodynamic formulation of statistical nonlinear optics , 2014 .

[8]  Sergei K. Turitsyn,et al.  Secure key distribution over a 500 km long link using a Raman ultra‐long fiber laser , 2014 .

[9]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[10]  Martín Gómez Ravetti,et al.  Distinguishing Noise from Chaos: Objective versus Subjective Criteria Using Horizontal Visibility Graph , 2014, PloS one.

[11]  B. Pompe,et al.  Permutation entropy: a natural complexity measure for time series. , 2002, Physical review letters.

[12]  Lucas Lacasa,et al.  Description of stochastic and chaotic series using visibility graphs. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  Cristina Masoller,et al.  Unveiling the complex organization of recurrent patterns in spiking dynamical systems , 2014, Scientific Reports.

[14]  Hojjat Adeli,et al.  New diagnostic EEG markers of the Alzheimer’s disease using visibility graph , 2010, Journal of Neural Transmission.

[15]  I. Ial,et al.  Nature Communications , 2010, Nature Cell Biology.

[16]  S. Babin,et al.  270-km ultralong Raman fiber laser. , 2009, Physical review letters.

[17]  S. Babin,et al.  Random distributed feedback fibre lasers , 2014 .

[18]  C. D. de Matos,et al.  Random fiber laser. , 2007, Physical review letters.

[19]  Chstoph Bandt,et al.  Order Patterns in Time Series , 2007 .

[20]  Zach DeVito,et al.  Opt , 2017 .

[21]  Massimiliano Zanin,et al.  Permutation Entropy and Its Main Biomedical and Econophysics Applications: A Review , 2012, Entropy.

[22]  S. Sugavanam,et al.  The laminar–turbulent transition in a fibre laser , 2013, Nature Photonics.

[23]  J. Javaloyes,et al.  Topological solitons as addressable phase bits in a driven laser , 2014, Nature Communications.

[24]  S. Coen,et al.  Ultraweak long-range interactions of solitons observed over astronomical distances , 2013, Nature Photonics.