Runge-Kutta Methods for Hyperbolic Conservation Laws with Stiff Relaxation Terms

Underresolved numerical schemes for hyperbolic conservation laws with stiff relaxation terms may generate unphysical spurious numerical results or reduce to lower order if the small relaxation time is not temporally well-resolved. We design a second-order Runge-Kutta type splitting method that possesses the discrete analogue of the continuous asymptotic limit, which thus is able to capture the correct physical behaviors with high order accuracy, even if the initial layer and the small relaxation time are not numerically resolved.

[1]  Gilbert Strang,et al.  Accurate partial difference methods , 1964 .

[2]  J. Broadwell,et al.  Shock Structure in a Simple Discrete Velocity Gas , 1964 .

[3]  T. Teichmann,et al.  Introduction to physical gas dynamics , 1965 .

[4]  Alexandre J. Chorin,et al.  Random choice methods with applications to reacting gas flow , 1977 .

[5]  J. F. Clarke Gas dynamics with relaxation effects , 1978 .

[6]  G. Papanicolaou,et al.  The fluid‐dynamical limit of a nonlinear model boltzmann equation , 1979 .

[7]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov's method , 1979 .

[8]  Alexandre Joel Chorin,et al.  Riemann Problems for Reacting Gas, with Applications to Transition , 1982 .

[9]  P. Woodward,et al.  The Piecewise Parabolic Method (PPM) for Gas Dynamical Simulations , 1984 .

[10]  P. Colella,et al.  Theoretical and numerical structure for reacting shock waves , 1986 .

[11]  Michael Renardy,et al.  Mathematical problems in viscoelasticity , 1987 .

[12]  Phillip Colella,et al.  Adaptive methods for high Mach number reacting flow , 1987 .

[13]  S. Osher,et al.  Uniformly high order accurate essentially non-oscillatory schemes, 111 , 1987 .

[14]  Tai-Ping Liu Hyperbolic conservation laws with relaxation , 1987 .

[15]  C. Cercignani The Boltzmann equation and its applications , 1988 .

[16]  James Glimm,et al.  The continuous structure of discontinuities , 1989 .

[17]  H. C. Yee,et al.  A class of high resolution explicit and implicit shock-capturing methods , 1989 .

[18]  E. Larsen,et al.  Asymptotic solutions of numerical transport problems in optically thick, diffusive regimes II , 1989 .

[19]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[20]  Randall J. LeVeque,et al.  A study of numerical methods for hyperbolic conservation laws with stiff source terms , 1990 .

[21]  B. Perthame,et al.  Boltzmann type schemes for gas dynamics and the entropy property , 1990 .

[22]  I. Suliciu On modelling phase transitions by means of rate-type constitutive equations. Shock wave structure , 1990 .

[23]  B. Perthame,et al.  Numerical passage from kinetic to fluid equations , 1991 .

[24]  Shi Jin,et al.  The discrete-ordinate method in diffusive regimes , 1991 .

[25]  Andrew J. Majda,et al.  Theoretical and numerical structure for unstable one-dimensional detonations , 1991 .

[26]  Eduard Harabetian A Subcell Resolution Method for Viscous Systems of Conservation Laws , 1992 .

[27]  H. C. Yee,et al.  Numerical wave propagation in an advection equation with a nonlinear source term , 1992 .

[28]  Edward W. Larsen,et al.  The Asymptotic Diffusion Limit of Discretized Transport Problems , 1992 .

[29]  C. D. Levermore,et al.  Fully-discrete numerical transfer in diffusive regimes , 1993 .

[30]  Richard B. Pember,et al.  Numerical Methods for Hyperbolic Conservation Laws With Stiff Relaxation I. Spurious Solutions , 1993, SIAM J. Appl. Math..

[31]  Richard B. Pember,et al.  Numerical Methods for Hyperbolic Conservation Laws with Stiff Relaxation II. Higher-Order Godunov Methods , 1993, SIAM J. Sci. Comput..

[32]  Z. Xin,et al.  The relaxation schemes for systems of conservation laws in arbitrary space dimensions , 1995 .

[33]  Giovanni Russo,et al.  Uniformly Accurate Schemes for Hyperbolic Systems with Relaxation , 1997 .

[34]  P. Roe Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .