Application of meshless procedure for the peristaltic flow analysis

Abstract The paper deals with the problem of the peristaltic flow of Newtonian fluid in two-dimensional channel. The problem is considered using stream function and vorticity formulation. The high-order iterative formulation is used in order to transform the nonlinear problem into a hierarchy of inhomogeneous problems which are solved using the method of fundamental solutions and the radial basis functions. The first approximation is obtained for Reynolds number Re = 0 . In the paper results are presented for different values of Reynolds number and flow rate.

[1]  M. Mierzwiczak,et al.  The application of the method of fundamental solutions to a simulation of the two-dimensional sloshing phenomenon , 2008 .

[2]  T. Klekiel,et al.  Trefftz method for large deflection of plates with application of evolutionary algorithms , 2006 .

[3]  C. H. Li,et al.  Peristaltic transport in circular cylindrical tubes. , 1970, Journal of biomechanics.

[4]  Dharmendra Tripathi,et al.  A mathematical model for the peristaltic flow of chyme movement in small intestine. , 2011, Mathematical biosciences.

[5]  S. Das,et al.  Peristaltic flow of viscoelastic fluid with fractional Maxwell model through a channel , 2010, Appl. Math. Comput..

[6]  Tasawar Hayat,et al.  On mechanism of peristaltic flows for power-law fluids , 2006 .

[7]  Tasawar Hayat,et al.  Effect of wall properties on the peristaltic flow of a third grade fluid in a curved channel with heat and mass transfer , 2011 .

[8]  Piotr Gorzelańczyk,et al.  Application of method of fundamental solutions for elasto-plastic torsion of prismatic rods , 2012 .

[9]  S. Srinivas,et al.  Peristaltic transport of a Newtonian fluid in a vertical asymmetric channel with heat transfer and porous medium , 2009, Appl. Math. Comput..

[10]  Shawn W. Walker,et al.  Shape optimization of peristaltic pumping , 2009, J. Comput. Phys..

[11]  Jerzy M. Floryan,et al.  Spectrally-accurate algorithm for moving boundary problems for the Navier-Stokes equations , 2010, J. Comput. Phys..

[12]  S. Liao HIGH-ORDER BEM FORMULATIONS FOR STRONGLY NON-LINEAR PROBLEMS GOVERNED BY QUITE GENERAL NON-LINEAR DIFFERENTIAL OPERATORS , 1996 .

[13]  K. Balakrishnan,et al.  An operator splitting-radial basis function method for the solution of transient nonlinear Poisson problems☆ , 2002 .

[14]  Noreen Sher Akbar Heat transfer and carbon nano tubes analysis for the peristaltic flow in a diverging tube , 2015 .

[15]  C. Tsai Homotopy method of fundamental solutions for solving certain nonlinear partial differential equations , 2012 .

[16]  Enayat Mahajerin,et al.  The fundamental collocation method applied to the nonlinear poisson equation in two dimensions , 1987 .

[17]  N. Akbar,et al.  Thermal and velocity slip effects on the peristaltic flow of a six constant Jeffrey’s fluid model , 2012 .

[18]  Qing Hua Qin,et al.  Meshless approach for thermo-mechanical analysis of functionally graded materials , 2008 .

[19]  Abdelhalim Ebaid,et al.  A new numerical solution for the MHD peristaltic flow of a bio-fluid with variable viscosity in a circular cylindrical tube via Adomian decomposition method , 2008 .

[20]  Vitor M. A. Leitão,et al.  A meshless method for Kirchhoff plate bending problems , 2001 .

[21]  Tasawar Hayat,et al.  Influence of partial slip on the peristaltic flow in a porous medium , 2008 .

[22]  D. L. Young,et al.  The method of fundamental solutions for solving incompressible Navier–Stokes problems , 2009 .

[23]  Tasawar Hayat,et al.  Exact peristaltic flow in tubes with an endoscope , 2006, Appl. Math. Comput..

[24]  Solution of the nonlinear equation for isothermal gas flows in porous medium by Trefftz method , 2006 .

[25]  S. Liao HIGH-ORDER BEM FORMULATIONS FOR STRONGLY NON-LINEAR PROBLEMS GOVERNED BY QUITE GENERAL NON-LINEAR DIFFERENTIAL OPERATORS. PART 2: SOME 2D EXAMPLES , 1997 .

[26]  Nan-Jing Wu,et al.  Meshless numerical simulation for fully nonlinear water waves , 2006 .

[27]  N. Akbar,et al.  Characteristics of heating scheme and mass transfer on the peristaltic flow for an Eyring–Powell fluid in an endoscope , 2012 .

[28]  N. Akbar,et al.  Simulation of heat transfer on the peristaltic flow of a Jeffrey-six constant fluid in a diverging tube , 2011 .

[29]  K. B. Naidu,et al.  A numerical study of peristaltic flows , 1995 .

[30]  Sohail Nadeem,et al.  Peristaltic flow of a Williamson fluid in an asymmetric channel , 2010 .

[31]  Hamid Zahrouni,et al.  High order continuation algorithm and meshless procedures to solve nonlinear Poisson problems , 2012 .

[32]  Noreen Sher Akbar,et al.  Influence of magnetic field on peristaltic flow of a Casson fluid in an asymmetric channel: Application in crude oil refinement , 2015 .

[33]  T. Hayat,et al.  Simultaneous effects of slip and heat transfer on the peristaltic flow , 2010 .

[34]  K. Mekheimer,et al.  Peristaltic flow of a couple stress fluid in an annulus: Application of an endoscope , 2008 .

[35]  M. Sen,et al.  Fluid mixing induced by vibrating walls , 2005 .

[36]  S. Weinberg,et al.  Peristaltic pumping with long wavelengths at low Reynolds number , 1968, Journal of Fluid Mechanics.

[37]  Tasawar Hayat,et al.  Effect of induced magnetic field on peristaltic transport of a Carreau fluid , 2010 .

[38]  Guirong Liu,et al.  A point interpolation meshless method based on radial basis functions , 2002 .

[39]  Tasawar Hayat,et al.  Heat and mass transfer effects on the peristaltic flow of Johnson–Segalman fluid in a curved channel with compliant walls , 2012 .

[40]  R. Mathon,et al.  The Approximate Solution of Elliptic Boundary-Value Problems by Fundamental Solutions , 1977 .

[41]  Y. Abd Elmaboud,et al.  Influence of induced magnetic field on peristaltic flow in an annulus , 2012 .

[42]  Ching-Shyang Chen,et al.  The method of fundamental solutions for non-linear thermal explosions , 1995 .

[43]  M. Fallahi The quasi-linear method of fundamental solution applied to non-linear wave equations , 2012 .

[44]  Tasawar Hayat,et al.  Peristaltic flow of a Maxwell fluid in a channel with compliant walls , 2009 .

[45]  M. Kothandapani,et al.  Peristaltic transport of a Jeffrey fluid under the effect of magnetic field in an asymmetric channel , 2008 .

[46]  T. Hayat,et al.  Peristaltic flow under the effects of an induced magnetic field and heat and mass transfer , 2012 .

[47]  T. Hayat,et al.  Peristaltic transport of fourth grade fluid with heat transfer and induced magnetic field , 2010 .

[48]  C. Pozrikidis,et al.  A study of peristaltic flow , 1987, Journal of Fluid Mechanics.

[49]  V. D. Kupradze,et al.  The method of functional equations for the approximate solution of certain boundary value problems , 1964 .

[50]  J. Kołodziej,et al.  Application of MFS for determination of effective thermal conductivity of unidirectional composites with linearly temperature dependent conductivity of constituents , 2012 .

[51]  L. M. Srivastava,et al.  Influence of wall elasticity and poiseuille flow on peristaltic induced flow of a particle-fluid mixture , 1997 .

[52]  Shijun Liao,et al.  Boundary element method for general nonlinear differential operators , 1997 .

[53]  M. K. Chaube,et al.  Peristaltic flow of a micropolar fluid through a porous medium in the presence of an external magnetic field , 2011 .

[54]  S Nadeem,et al.  Peristaltic flow of a Jeffrey fluid in a rectangular duct , 2010 .

[55]  M. Mierzwiczak,et al.  Meshless methods for the inverse problem related to the determination of elastoplastic properties from the torsional experiment , 2013 .

[56]  Nan-Jing Wu,et al.  Applicability of the method of fundamental solutions to 3-D wave–body interaction with fully nonlinear free surface , 2008 .

[57]  Tasawar Hayat,et al.  Peristaltic transport of viscous fluid in a curved channel with compliant walls , 2011 .

[58]  W. Olbricht,et al.  Fluid mechanics in the perivascular space. , 2011, Journal of theoretical biology.

[59]  S. Srinivas,et al.  The influence of heat and mass transfer on MHD peristaltic flow through a porous space with compliant walls , 2009, Appl. Math. Comput..

[60]  Michel Y. Jaffrin,et al.  Inertia and streamline curvature effects on peristaltic pumping , 1973 .

[61]  Frank C. P. Yin,et al.  Comparison of theory and experiment in peristaltic transport , 1971, Journal of Fluid Mechanics.

[62]  T. Hayat,et al.  Influence of wall properties on the peristaltic flow of a nanofluid: Analytic and numerical solutions , 2012 .

[63]  Nasir Ali,et al.  Non-Newtonian fluid flow induced by peristaltic waves in a curved channel , 2010 .

[64]  M. Hosami,et al.  The quasi-linear method of fundamental solution applied to transient non-linear Poisson problems , 2011 .

[65]  Palghat A. Ramachandran,et al.  A Particular Solution Trefftz Method for Non-linear Poisson Problems in Heat and Mass Transfer , 1999 .

[66]  S. Nadeem,et al.  Influence of inclined magnetic field on peristaltic flow of a Williamson fluid model in an inclined symmetric or asymmetric channel , 2010, Math. Comput. Model..

[67]  T. Hayat,et al.  Effects of heat and mass transfer on the peristaltic flow of hyperbolic tangent fluid in an annulus , 2011 .

[68]  Brian J. Edwards,et al.  Efficient Pseudospectral Flow Simulations in Moderately Complex Geometries , 1998 .

[69]  K. Ayukawa,et al.  Numerical study of two-dimensional peristaltic flows , 1982, Journal of Fluid Mechanics.

[70]  Shijun Liao,et al.  A short note on the general boundary element method for viscous flows with high Reynolds number , 2003 .

[71]  Nasir Ali,et al.  Heat transfer analysis of peristaltic flow in a curved channel , 2010 .

[72]  Qing Hua Qin,et al.  A meshless model for transient heat conduction in functionally graded materials , 2006 .

[73]  Zhu Ji-mao,et al.  A SHORT NOTE ON HIGH-ORDER STREAMFUNCTION–VORTICITY FORMULATIONS OF 2D STEADY STATE NAVIER–STOKES EQUATIONS , 1996 .

[74]  DRM—MFS for two-dimensional finite elasticity , 2012 .

[75]  P. Tong,et al.  An Analysis of Peristaltic Pumping , 1972 .

[76]  Mihir Sen,et al.  Streamline topologies of two-dimensional peristaltic flow and their bifurcations , 2010 .

[77]  Kuppalapalle Vajravelu,et al.  The influence of heat transfer on peristaltic transport of a Jeffrey fluid in a vertical porous stratum , 2011 .

[78]  Hamid Zahrouni,et al.  Perturbation technique and method of fundamental solution to solve nonlinear Poisson problems , 2011 .

[79]  Tasawar Hayat,et al.  Peristaltic flow of a Williamson fluid in an inclined asymmetric channel with partial slip and heat transfer , 2012 .

[80]  Jan Adam Kołodziej,et al.  The determination temperature-dependent thermal conductivity as inverse steady heat conduction problem , 2011 .

[81]  Q. Qin,et al.  A meshless method for generalized linear or nonlinear Poisson-type problems , 2006 .

[82]  Ali Tavakoli,et al.  Applicability of the method of fundamental solutions to interaction of fully nonlinear water waves with a semi-infinite floating ice plate , 2011 .

[83]  D. L. Young,et al.  Computation of Nonlinear Free-Surface Flows by a Meshless Numerical Method , 2008 .