Automatic Conversion of Triangular Meshes Into Quadrilateral Meshes with Directionality

This paper presents a triangular-to-quadrilateral mesh conversion method that can control the directionality of the output quadrilateral mesh according to a user-specified vector field. Given a triangular mesh and a vector field, the method first scores all possible quadrilaterals that can be formed by pairs of adjacent triangles, according to their shape and directionality. It then converts the pairs into quadrilateral elements in order of the scores to form a quadrilateral mesh. Engineering analyses with finite element methods occasionally require a quadrilateral mesh well aligned along the boundary geometry or the directionality of some physical phenomena, such as in the directions of a streamline, shock boundary, or force propagation vectors. The mesh conversion method can control the mesh directionality according to any desired vector fields, and the method can be used with any existing triangular mesh generators.

[1]  Kenji Shimada,et al.  Automatic triangular mesh generation of trimmed parametric surfaces for finite element analysis , 1998, Comput. Aided Geom. Des..

[2]  K. Ho-Le,et al.  Finite element mesh generation methods: a review and classification , 1988 .

[3]  S. H. Lo,et al.  Generating quadrilateral elements on plane and over curved surfaces , 1989 .

[4]  田島 玲 Optimizing geometric triangulations by using integer programming , 2000 .

[5]  O. Zienkiewicz,et al.  A new approach to the development of automatic quadrilateral mesh generation , 1991 .

[6]  T. Tam,et al.  2D finite element mesh generation by medial axis subdivision , 1991 .

[7]  E. Heighway A mesh generator for automatically subdividing irregular polygons into quadrilaterals , 1983 .

[8]  Mark S. Shephard,et al.  Automatic three-dimensional mesh generation by the finite octree technique , 1984 .

[9]  Houman Borouchaki,et al.  Unstructured Triangular-Quadrilateral Mesh Generation. Application to Surface Meshing , 1996 .

[10]  Mark Yerry,et al.  A Modified Quadtree Approach To Finite Element Mesh Generation , 1983, IEEE Computer Graphics and Applications.

[11]  Keisuke Inoue,et al.  Automated Conversion of 2D Triangular Mesh into Quadrilateral Mesh with Directionality Control , 1998, IMR.

[12]  Kenji Shimada,et al.  Quadrilateral Meshing with Directionality Control through the Packing of Square Cells , 1998, IMR.

[13]  Ted D. Blacker,et al.  Paving: A new approach to automated quadrilateral mesh generation , 1991 .

[14]  H. Borouchaki,et al.  Adaptive triangular–quadrilateral mesh generation , 1998 .

[15]  C. Lee,et al.  A new scheme for the generation of a graded quadrilateral mesh , 1994 .

[16]  Mark S. Shephard,et al.  Automatic three‐dimensional mesh generation by the finite octree technique , 1984 .

[17]  S. Owen,et al.  H-Morph: an indirect approach to advancing front hex meshing , 1999 .

[18]  Kenji Shimada,et al.  Physically-based mesh generation: automated triangulation of surfaces and volumes via bubble packing , 1993 .

[19]  Matthew L. Staten,et al.  Advancing Front Quadrilateral Meshing Using Triangle Transformations , 1998, IMR.

[20]  K. R. Grice,et al.  Robust, geometrically based, automatic two‐dimensional mesh generation , 1987 .

[21]  J. M. Tembulkar,et al.  On generating quadrilateral elements from a triangular mesh , 1992 .

[22]  John M. Sullivan,et al.  Automatic conversion of triangular finite element meshes to quadrilateral elements , 1991 .

[23]  Matthew G Rees Combining Quadrilateral and Triangular Meshing Using the Advancing Front Approach , 1997 .

[24]  Steven E. Benzley,et al.  GENERALIZED 3-D PAVING : AN AUTOMATED QUADRILATERAL SURFACE MESH GENERATION ALGORITHM , 1996 .