Multi-class relevance feedback content-based image retrieval

Relevance feedback methods for content-based image retrieval have shown promise in a variety of image database applications. These techniques assume two-class relevance feedback: relevant and irrelevant classes. While simple computationally, two-class relevance feedback often becomes inadequate in providing sufficient information to help rapidly improve retrieval performance. In this paper we propose a multi-class form of relevance feedback retrieval to try to exploit multi-class information. For a given query, we use a χ2 analysis to determine the local relevance of each feature dimension with multi-class relevance feedback. This information is then used to customize the retrieval metric to rank images. By exploiting multiclass information, our method is able to create flexible metrics that better capture user perceived similarity. In a number of image data sets, the method achieves a higher level of precision with fewer iterations, demonstrating the potential for substantial improvements over two-class relevance feedback retrieval.

[1]  T. S. Huang,et al.  Exploring the nature and variants of relevance feedback , 2001, Proceedings IEEE Workshop on Content-Based Access of Image and Video Libraries (CBAIVL 2001).

[2]  Thomas S. Huang,et al.  Optimizing learning in image retrieval , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[3]  Ramesh C. Jain,et al.  Similarity measures for image databases , 1995, Electronic Imaging.

[4]  B. Efron,et al.  Data Analysis Using Stein's Estimator and its Generalizations , 1975 .

[5]  C. Stein,et al.  Estimation with Quadratic Loss , 1992 .

[6]  Shi-Min Hu,et al.  Optimal adaptive learning for image retrieval , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[7]  Jing Peng,et al.  Region-based Image Retrieval Using Probabilistic Feature Relevance Learning , 2001, Pattern Analysis & Applications.

[8]  Thomas S. Huang,et al.  Small sample learning during multimedia retrieval using BiasMap , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[9]  Nuno Vasconcelos,et al.  A probabilistic architecture for content-based image retrieval , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[10]  Jing Peng A multi-class relevance feedback approach to image retrieval , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).

[11]  J. Neyman,et al.  INADMISSIBILITY OF THE USUAL ESTIMATOR FOR THE MEAN OF A MULTIVARIATE NORMAL DISTRIBUTION , 2005 .

[12]  Thomas G. Dietterich What is machine learning? , 2020, Archives of Disease in Childhood.

[13]  Jerome H. Friedman,et al.  Flexible Metric Nearest Neighbor Classification , 1994 .

[14]  Bernhard Schölkopf,et al.  Estimating the Support of a High-Dimensional Distribution , 2001, Neural Computation.

[15]  Thomas S. Huang,et al.  Edge-based structural features for content-based image retrieval , 2001, Pattern Recognit. Lett..

[16]  Bir Bhanu,et al.  Probabilistic Feature Relevance Learning for Content-Based Image Retrieval , 1999, Comput. Vis. Image Underst..

[17]  Bir Bhanu,et al.  Gabor wavelet representation for 3-D object recognition , 1997, IEEE Trans. Image Process..

[18]  Thomas S. Huang,et al.  Content-based image retrieval with relevance feedback in MARS , 1997, Proceedings of International Conference on Image Processing.

[19]  Stan Z. Li,et al.  Extraction of feature subspaces for content-based retrieval using relevance feedback , 2001, MULTIMEDIA '01.

[20]  Michael McGill,et al.  Introduction to Modern Information Retrieval , 1983 .

[21]  Yoav Freund,et al.  Experiments with a New Boosting Algorithm , 1996, ICML.

[22]  Chi-Ren Shyu,et al.  Relevance feedback decision trees in content-based image retrieval , 2000, 2000 Proceedings Workshop on Content-based Access of Image and Video Libraries.

[23]  B. S. Manjunath,et al.  Texture Features for Browsing and Retrieval of Image Data , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[24]  Jing Peng,et al.  Adaptive quasiconformal kernel metric for image retrieval , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[25]  Bir Bhanu,et al.  Independent Feature Analysis for Image Retrieval , 1999, MLDM.

[26]  Jing Peng,et al.  Feature relevance learning with query shifting for content-based image retrieval , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[27]  Christos Faloutsos,et al.  MindReader: Querying Databases Through Multiple Examples , 1998, VLDB.

[28]  Keinosuke Fukunaga,et al.  The optimal distance measure for nearest neighbor classification , 1981, IEEE Trans. Inf. Theory.

[29]  Jing Peng,et al.  A new content-based image retrieval system using hand gesture and relevance feedback , 2001, IEEE International Conference on Multimedia and Expo, 2001. ICME 2001..

[30]  Robert Tibshirani,et al.  Discriminant Adaptive Nearest Neighbor Classification , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[31]  Nello Cristianini,et al.  An Introduction to Support Vector Machines and Other Kernel-based Learning Methods , 2000 .

[32]  Erkki Oja,et al.  Self-Organising Maps as a Relevance Feedback Technique in Content-Based Image Retrieval , 2001, Pattern Analysis & Applications.

[33]  Tom Minka,et al.  Interactive learning with a "society of models" , 1997, Pattern Recognit..

[34]  Bir Bhanu,et al.  Feature Relevance Estimation for Image Databases , 1999, Multimedia Information Systems.

[35]  David L. Waltz,et al.  Trading MIPS and memory for knowledge engineering , 1992, CACM.

[36]  Cordelia Schmid,et al.  Constructing models for content-based image retrieval , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[37]  Thomas S. Huang,et al.  One-class SVM for learning in image retrieval , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).

[38]  David J. Hand,et al.  The multi-class metric problem in nearest neighbour discrimination rules , 1990, Pattern Recognit..

[39]  Thomas S. Huang,et al.  Relevance feedback: a power tool for interactive content-based image retrieval , 1998, IEEE Trans. Circuits Syst. Video Technol..

[40]  Wei-Ying Ma,et al.  Learning similarity measure for natural image retrieval with relevance feedback , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[41]  Catherine Blake,et al.  UCI Repository of machine learning databases , 1998 .

[42]  Christopher M. Bishop,et al.  Classification and regression , 1997 .

[43]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[44]  Thierry Pun,et al.  Strategies for positive and negative relevance feedback in image retrieval , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[45]  Dragutin Petkovic,et al.  Query by Image and Video Content: The QBIC System , 1995, Computer.

[46]  Robert M. Haralick,et al.  Feature normalization and likelihood-based similarity measures for image retrieval , 2001, Pattern Recognit. Lett..