The 3D-based scaling index algorithm: a new structure measure to analyze trabecular bone architecture in high-resolution MR images in vivo

IntroductionThe purpose of this study was to obtain different structure measures as the three-dimensional (3D)-based scaling index method (SIM) and standard two-dimensional (2D) bone histomorphometric parameters from high-resolution (HR) magnetic resonance (MR) images of the distal radius and to compare these parameters with bone mineral density (BMD) in their diagnostic performance to differentiate postmenopausal patients with and without vertebral fractures.MethodsAxial HR-MR images of the distal radius were obtained at 1.5 T in 40 postmenopausal women (17 with osteoporotic spine fractures and 23 controls). Trabecular microarchitecture analysis was performed using the new structure measure % MathType!Translator!2!1!AMS LaTeX.tdl!TeX -- AMS-LaTeX! % MathType!MTEF!2!1!+- % feaaeaart1ev0aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX % garmWu51MyVXgatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wz % aebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY-Hhbbf9v8qqaq % Fr0xc9pk0xbba9q8WqFfea0-yr0RYxir-Jbba9q8aq0-yq-He9q8qq % Q8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeWaeaaakeaaca % WGTbWaaSbaaSqaaiaadcfacaGGOaGaeqySdeMaaiykaaqabaaaaa!3C7B!$$m_{{P(\alpha )}}$$, derived from the SIM, as well as standard morphological 2D parameters. BMD of the spine was obtained using quantitative computed tomography (QCT). Receiver operating characteristic (ROC) analyses were used to determine diagnostic performance in differentiating both groups. Results were validated by bootstrapping techniques.ResultsSignificant differences between both patient groups were obtained using % MathType!Translator!2!1!AMS LaTeX.tdl!TeX -- AMS-LaTeX! % MathType!MTEF!2!1!+- % feaaeaart1ev0aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX % garmWu51MyVXgatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wz % aebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY-Hhbbf9v8qqaq % Fr0xc9pk0xbba9q8WqFfea0-yr0RYxir-Jbba9q8aq0-yq-He9q8qq % Q8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeWaeaaakeaaca % WGTbWaaSbaaSqaaiaadcfacaGGOaGaeqySdeMaaiykaaqabaaaaa!3C7B!$$m_{{P(\alpha )}}$$, 2D parameters, and spine BMD (p<0.05). In comparison with the 2D texture parameters [area under the curve (AUC) up to 0.67], diagnostic performance was significantly higher for % MathType!Translator!2!1!AMS LaTeX.tdl!TeX -- AMS-LaTeX! % MathType!MTEF!2!1!+- % feaaeaart1ev0aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX % garmWu51MyVXgatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wz % aebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY-Hhbbf9v8qqaq % Fr0xc9pk0xbba9q8WqFfea0-yr0RYxir-Jbba9q8aq0-yq-He9q8qq % Q8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeWaeaaakeaaca % WGTbWaaSbaaSqaaiaadcfacaGGOaGaeqySdeMaaiykaaqabaaaaa!3C7B!$$m_{{P(\alpha )}}$$(AUC=0.85; p<0.05). There was a trend for a higher AUC value for % MathType!Translator!2!1!AMS LaTeX.tdl!TeX -- AMS-LaTeX! % MathType!MTEF!2!1!+- % feaaeaart1ev0aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX % garmWu51MyVXgatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wz % aebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY-Hhbbf9v8qqaq % Fr0xc9pk0xbba9q8WqFfea0-yr0RYxir-Jbba9q8aq0-yq-He9q8qq % Q8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeWaeaaakeaaca % WGTbWaaSbaaSqaaiaadcfacaGGOaGaeqySdeMaaiykaaqabaaaaa!3C7B!$$m_{{P(\alpha )}}$$compared with BMD of the spine (AUC=0.71; p=0.81).Conclusion% MathType!Translator!2!1!AMS LaTeX.tdl!TeX -- AMS-LaTeX! % MathType!MTEF!2!1!+- % feaaeaart1ev0aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX % garmWu51MyVXgatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wz % aebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY-Hhbbf9v8qqaq % Fr0xc9pk0xbba9q8WqFfea0-yr0RYxir-Jbba9q8aq0-yq-He9q8qq % Q8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeWaeaaakeaaca % WGTbWaaSbaaSqaaiaadcfacaGGOaGaeqySdeMaaiykaaqabaaaaa!3C7B!$$m_{{P(\alpha )}}$$ yielded a robust measure of trabecular bone microarchitecture for HR-MR images of the radius, which significantly improved the diagnostic performance in differentiating postmenopausal women with and without osteoporotic spine fractures compared with standard 2D bone histomorphometric parameters. This 3D characterization of trabecular microarchitecture may provide a new approach to better assess the strength of human cancellous bone using HR-MR image data.

[1]  Wilfried Brauer,et al.  MELDOQ: Ein System zur Unterstützung der Früherkennung des malignen Melanoms durch digitale Bildverarbeitung , 2000, Bildverarbeitung für die Medizin.

[2]  S. Majumdar,et al.  Correlation of Trabecular Bone Structure with Age, Bone Mineral Density, and Osteoporotic Status: In Vivo Studies in the Distal Radius Using High Resolution Magnetic Resonance Imaging , 1997, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[3]  S. Majumdar,et al.  New Model-Independent Measures of Trabecular Bone Structure Applied to In Vivo High-Resolution MR Images , 2002, Osteoporosis International.

[4]  S. Majumdar,et al.  Heterogeneity of Trabecular Bone Structure in the Calcaneus Using Magnetic Resonance Imaging , 1998, Osteoporosis International.

[5]  T Aschenbrenner,et al.  Scaling-index method as an image processing tool in scanning-probe microscopy. , 2001, Ultramicroscopy.

[6]  S Majumdar,et al.  A review of magnetic resonance (MR) imaging of trabecular bone micro-architecture: contribution to the prediction of biomechanical properties and fracture prevalence. , 1998, Technology and health care : official journal of the European Society for Engineering and Medicine.

[7]  M. Nevitt,et al.  Vertebral fracture assessment using a semiquantitative technique , 1993, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[8]  Rolf Adams,et al.  Seeded Region Growing , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  F. Wehrli,et al.  Three‐dimensional nuclear magnetic resonance microimaging of trabecular bone , 1995, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[10]  Thomas Martin Deserno,et al.  Bildverarbeitung für die Medizin: Grundlagen, Modelle, Methoden, Anwendungen , 1997, Bildverarbeitung für die Medizin.

[11]  S. Majumdar,et al.  In Vivo High Resolution MRI of the Calcaneus: Differences in Trabecular Structure in Osteoporosis Patients , 1998, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[12]  A. Cotten,et al.  Trabecular bone structure of the calcaneus: preliminary in vivo MR imaging assessment in men with osteoporosis. , 2003, Radiology.

[13]  S. Majumdar,et al.  Trabecular Bone Architecture in the Distal Radius Using Magnetic Resonance Imaging in Subjects with Fractures of the Proximal Femur , 1999, Osteoporosis International.

[14]  Robert Tibshirani,et al.  An Introduction to the Bootstrap , 1994 .

[15]  H. Imhof,et al.  Imaging of trabecular bone structure in osteoporosis , 1999, European Radiology.

[16]  M. Boechat,et al.  Gender differences in vertebral sizes in adults: biomechanical implications. , 1994, Radiology.

[17]  F. Wehrli,et al.  High‐resolution variable flip angle 3D MR imaging of trabecular microstructure in vivo , 1993, Magnetic resonance in medicine.

[18]  P. Ross,et al.  Spatial relationships between prevalent and incident spine fractures. , 1999, Bone.

[19]  P. Rüegsegger,et al.  The ability of three-dimensional structural indices to reflect mechanical aspects of trabecular bone. , 1999, Bone.

[20]  Scott N. Hwang,et al.  Digital Topological Analysis of In Vivo Magnetic Resonance Microimages of Trabecular Bone Reveals Structural Implications of Osteoporosis , 2001, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[21]  S. Majumdar,et al.  Processing and Analysis of In Vivo High-Resolution MR Images of Trabecular Bone for Longitudinal Studies: Reproducibility of Structural Measures and Micro-Finite Element Analysis Derived Mechanical Properties , 2002, Osteoporosis International.

[22]  P. Delmas,et al.  Impairment of bone turnover in elderly women with hip fracture , 1993, Calcified Tissue International.

[23]  C. Wu,et al.  A comparison of bone densitometry measurements of the central skeleton in post-menopausal women with and without vertebral fracture. , 1995, The British journal of radiology.

[24]  P. Gallagher,et al.  The value of simple morphometric techniques in the diagnosis of osteoporosis. , 1992, Pathology, research and practice.

[25]  D. I. Rowley,et al.  Prediction of Bone Strength from Cancellous Structure of the Distal Radius: Can We Improve on DXA? , 2000, Osteoporosis International.

[26]  Analysing large-scale structure - I. Weighted scaling indices and constrained randomization , 2002, astro-ph/0207140.

[27]  M. Drezner,et al.  Bone histomorphometry: Standardization of nomenclature, symbols, and units: Report of the asbmr histomorphometry nomenclature committee , 1987, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[28]  S. Majumdar,et al.  Evaluation of technical factors affecting the quantification of trabecular bone structure using magnetic resonance imaging. , 1995, Bone.

[29]  Steven D. Kugelmass,et al.  Potential role of nuclear magnetic resonance for the evaluation of trabecular bone quality , 2005, Calcified Tissue International.

[30]  J. Sayre,et al.  Vertebral size in elderly women with osteoporosis. Mechanical implications and relationship to fractures. , 1995, The Journal of clinical investigation.

[31]  J. Sayre,et al.  Gender differences in vertebral body sizes in children and adolescents. , 1994, Radiology.

[32]  S. Majumdar,et al.  Local 3D Scaling Properties for the Analysis of Trabecular Bone Extracted from High-Resolution Magnetic Resonance Imaging of Human Trabecular Bone: Comparison with Bone Mineral Density in the Prediction of Biomechanical Strength In Vitro , 2003, Investigative radiology.

[33]  S. Majumdar,et al.  In Vivo Assessment of Architecture and Micro-Finite Element Analysis Derived Indices of Mechanical Properties of Trabecular Bone in the Radius , 2002, Osteoporosis International.

[34]  Jean Serra,et al.  Image Analysis and Mathematical Morphology , 1983 .

[35]  Ernst J. Rummeny,et al.  Analyzing and selecting texture measures for quantifying trabecular bone structures using surrogates , 2003, SPIE Medical Imaging.