Parallel refinement and coarsening of tetrahedral meshes

This paper presents a parallel adaptation procedure (coarsening and refinement) for tetrahedral meshes in a distributed environment. Coarsening relies upon an edge collapsing tool. Refinement uses edge-based subdivision templates. Mesh optimization maintains the quality of the adapted meshes. Focus is given to the parallelization of the various components. Scalability requires repartitioning of the mesh before applying either coarsening or refinement. Relatively good speed-ups have been obtained for all phases of the proposed adaptation scheme. Copyright © 1999 John Wiley & Sons, Ltd.

[1]  William F. Mitchell,et al.  A comparison of adaptive refinement techniques for elliptic problems , 1989, TOMS.

[2]  S. Sitharama Iyengar,et al.  Introduction to parallel algorithms , 1998, Wiley series on parallel and distributed computing.

[3]  Carlo L. Bottasso,et al.  Parallel automated adaptive procedures for unstructured meshes , 1995 .

[4]  Rupak Biswas,et al.  A new procedure for dynamic adaption of three-dimensional unstructured grids , 1993 .

[5]  N. Weatherill,et al.  Efficient three‐dimensional Delaunay triangulation with automatic point creation and imposed boundary constraints , 1994 .

[6]  Joseph JáJá,et al.  An Introduction to Parallel Algorithms , 1992 .

[7]  James H. Liu Bounded and periodic solutions of differential equations in Banach space , 1994 .

[8]  Joseph E. Flaherty,et al.  An Adaptive Solution Procedure for Rotorcraft Aerodynamics , 1998 .

[9]  Adrian Bowyer,et al.  Computing Dirichlet Tessellations , 1981, Comput. J..

[10]  Y. Kallinderis,et al.  Adaptive refinement-coarsening scheme for three-dimensional unstructured meshes , 1993 .

[11]  Barry Joe,et al.  Construction of three-dimensional Delaunay triangulations using local transformations , 1991, Comput. Aided Geom. Des..

[12]  Barry Joe,et al.  Quality Local Refinement of Tetrahedral Meshes Based on Bisection , 1995, SIAM J. Sci. Comput..

[13]  Russ D. Rausch,et al.  Spatial adaptation procedures on tetrahedral meshes for unsteady aerodynamic flow calculations , 1993 .

[14]  Mark S. Shephard,et al.  Automatic three‐dimensional mesh generation by the finite octree technique , 1984 .

[15]  M. Rivara Selective refinement/derefinement algorithms for sequences of nested triangulations , 1989 .

[16]  Mark S. Shephard,et al.  Automatic three-dimensional mesh generation by the finite octree technique , 1984 .

[17]  Paul-Louis George,et al.  Optimization of Tetrahedral Meshes , 1995 .

[18]  Leonid Oliker,et al.  Efficient load balancing and data remapping for adaptive grid calculations , 1997, SPAA '97.

[19]  Dimitri J. Mavriplis,et al.  Adaptive mesh generation for viscous flows using delaunay triangulation , 1990 .

[20]  Robin Sibson,et al.  Computing Dirichlet Tessellations in the Plane , 1978, Comput. J..

[21]  Eberhard Bänsch,et al.  Local mesh refinement in 2 and 3 dimensions , 1991, IMPACT Comput. Sci. Eng..

[22]  H. Borouchaki,et al.  Adaptive triangular–quadrilateral mesh generation , 1998 .

[23]  N. Golias,et al.  An approach to refining three‐dimensional tetrahedral meshes based on Delaunay transformations , 1994 .

[24]  Paul-Louis George,et al.  Fully automatic mesh generator for 3D domains of any shape , 1990, IMPACT Comput. Sci. Eng..

[25]  Mark T. Jones,et al.  Adaptive refinement of unstructured finite-element meshes , 1997 .

[26]  F. Bornemann,et al.  Adaptive multivlevel methods in three space dimensions , 1993 .

[27]  A. Liu,et al.  On the shape of tetrahedra from bisection , 1994 .

[28]  Mark T. Jones,et al.  Computational Results for Parallel Unstructured Mesh Computations , 1994 .

[29]  M. Rivara,et al.  A 3-D refinement algorithm suitable for adaptive and multi-grid techniques , 1992 .

[30]  B. Joe Three-dimensional triangulations from local transformations , 1989 .

[31]  Boleslaw K. Szymanski,et al.  Adaptive Local Refinement with Octree Load Balancing for the Parallel Solution of Three-Dimensional Conservation Laws , 1997, J. Parallel Distributed Comput..

[32]  Mark S. Shephard,et al.  Parallel unstructured distributed three-dimensional mesh generation , 1998 .

[33]  Can Ozturan Distributed environment and load balancing for adaptive unstructured meshes , 1996 .

[34]  D. F. Watson Computing the n-Dimensional Delaunay Tesselation with Application to Voronoi Polytopes , 1981, Comput. J..