A microfluidic-based hydrodynamic trap: design and implementation.

We report an integrated microfluidic device for fine-scale manipulation and confinement of micro- and nanoscale particles in free-solution. Using this device, single particles are trapped in a stagnation point flow at the junction of two intersecting microchannels. The hydrodynamic trap is based on active flow control at a fluid stagnation point using an integrated on-chip valve in a monolithic PDMS-based microfluidic device. In this work, we characterize device design parameters enabling precise control of stagnation point position for efficient trap performance. The microfluidic-based hydrodynamic trap facilitates particle trapping using the sole action of fluid flow and provides a viable alternative to existing confinement and manipulation techniques based on electric, optical, magnetic or acoustic force fields. Overall, the hydrodynamic trap enables non-contact confinement of fluorescent and non-fluorescent particles for extended times and provides a new platform for fundamental studies in biology, biotechnology and materials science.

[1]  Geoffrey Ingram Taylor,et al.  The formation of emulsions in definable fields of flow , 1934 .

[2]  S. Chu,et al.  Observation of a single-beam gradient force optical trap for dielectric particles. , 1986, Optics letters.

[3]  L. G. Leal,et al.  A computer-controlled four-roll mill for investigations of particle and drop dynamics in two-dimensional linear shear flows , 1986, Journal of Fluid Mechanics.

[4]  Thomas F. Edgar,et al.  Process Dynamics and Control , 1989 .

[5]  Hans M. Hertz,et al.  Standing-wave Acoustic Trap For Nonintrusive Positioning of Microparticles , 1995 .

[6]  D E Smith,et al.  Single polymer dynamics in an elongational flow. , 1997, Science.

[7]  H. Morgan,et al.  Ac electrokinetics: a review of forces in microelectrode structures , 1998 .

[8]  S. Quake,et al.  Monolithic microfabricated valves and pumps by multilayer soft lithography. , 2000, Science.

[9]  Charlie Gosse,et al.  Magnetic tweezers: micromanipulation and force measurement at the molecular level. , 2002, Biophysical journal.

[10]  D. Grier A revolution in optical manipulation , 2003, Nature.

[11]  Steven Chu,et al.  Observation of Polymer Conformation Hysteresis in Extensional Flow , 2003, Science.

[12]  Hakho Lee,et al.  Manipulation of biological cells using a microelectromagnet matrix , 2004 .

[13]  Eric J. Amis,et al.  Microfluidic analog of the four-roll mill , 2004 .

[14]  Vincent Studer,et al.  Scaling properties of a low-actuation pressure microfluidic valve , 2004 .

[15]  Luke P. Lee,et al.  Integrated multiple patch-clamp array chip via lateral cell trapping junctions , 2004 .

[16]  A. Folch,et al.  Large-scale single-cell trapping and imaging using microwell arrays. , 2005, Analytical chemistry.

[17]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[18]  Ming C. Wu,et al.  Massively parallel manipulation of single cells and microparticles using optical images , 2005, Nature.

[19]  W. E. Moerner,et al.  Method for trapping and manipulating nanoscale objects in solution , 2005 .

[20]  Adam E Cohen,et al.  Control of nanoparticles with arbitrary two-dimensional force fields. , 2005, Physical review letters.

[21]  M.D. Armani,et al.  Using feedback control of microflows to independently steer multiple particles , 2006, Journal of Microelectromechanical Systems.

[22]  Robert M Johann,et al.  Cell trapping in microfluidic chips , 2006, Analytical and bioanalytical chemistry.

[23]  Dino Di Carlo,et al.  Dynamic single-cell analysis for quantitative biology. , 2006, Analytical chemistry.

[24]  Luke P. Lee,et al.  Dynamic single cell culture array. , 2006, Lab on a chip.

[25]  Aliasger K Salem,et al.  Rapid localized cell trapping on biodegradable polymers using cell surface derivatization and microfluidic networking. , 2006, Biomaterials.

[26]  Barry R Lutz,et al.  Hydrodynamic tweezers: 1. Noncontact trapping of single cells using steady streaming microeddies. , 2006, Analytical chemistry.

[27]  Breakup of carbon nanotube flocs in microfluidic traps. , 2006, Journal of colloid and interface science.

[28]  Nerayo P. Teclemariam,et al.  Microfluidic four-roll mill for all flow types , 2007 .

[29]  Thomas Laurell,et al.  Noninvasive acoustic cell trapping in a microfluidic perfusion system for online bioassays. , 2007, Analytical chemistry.

[30]  Shoji Takeuchi,et al.  A trap-and-release integrated microfluidic system for dynamic microarray applications , 2007, Proceedings of the National Academy of Sciences.

[31]  R. Misra,et al.  Biomaterials , 2008 .

[32]  Andrew M Wo,et al.  Trapping of bioparticles via microvortices in a microfluidic device for bioassay applications. , 2008, Analytical chemistry.

[33]  David A. Weitz,et al.  Single-layer membrane valves for elastomeric microfluidic devices , 2008 .

[34]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[35]  T. Laurell,et al.  Review of cell and particle trapping in microfluidic systems. , 2009, Analytica chimica acta.

[36]  R. Jaenisch,et al.  Microfluidic Control of Cell Pairing and Fusion , 2009, Nature Methods.

[37]  M. Lipson,et al.  Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides , 2009, Nature.

[38]  Rebecca Dylla-Spears,et al.  Single-molecule sequence detection via microfluidic planar extensional flow at a stagnation point. , 2010, Lab on a chip.

[39]  M. Tanyeri,et al.  Hydrodynamic trap for single particles and cells. , 2010, Applied physics letters.