Nonparametric inference for Lévy-driven Ornstein-Uhlenbeck processes
暂无分享,去创建一个
[1] G. Jongbloed,et al. Parametric Estimation for Subordinators and Induced OU Processes , 2006 .
[2] J. Wellner,et al. The suppport reduction algorithm for computing nonparametric function estimates in mixture models , 2004, math/0405511.
[3] G. Roberts,et al. Bayesian inference for non‐Gaussian Ornstein–Uhlenbeck stochastic volatility processes , 2004 .
[4] Hiroki Masuda. On multidimensional Ornstein-Uhlenbeck processes driven by a general Lévy process , 2004 .
[5] F. Steutel,et al. Infinite Divisibility of Probability Distributions on the Real Line , 2003 .
[6] Thierry Jeantheau,et al. Stochastic volatility models as hidden Markov models and statistical applications , 2000 .
[7] Ken-iti Sato. Lévy Processes and Infinitely Divisible Distributions , 1999 .
[8] N. Shephard,et al. Likelihood analysis of a first‐order autoregressive model with exponential innovations , 1999 .
[9] P. Hughett. Error Bounds for Numerical Inversion of a Probability Characteristic Function , 1998 .
[10] S. Satchell,et al. The Cumulant Generating Function Estimation Method , 1997, Econometric Theory.
[11] Avishai Mandelbaum,et al. On Harris Recurrence in Continuous Time , 1994, Math. Oper. Res..
[12] S. Meyn,et al. Stability of Markovian processes II: continuous-time processes and sampled chains , 1993, Advances in Applied Probability.
[13] T. Shiga,et al. A recurrence criterion for Markov processes of Ornstein-Uhlenbeck type , 1990 .
[14] M. Thompson,et al. Minimum‐distance methods based on quadratic distances for transforms , 1987 .
[15] A. Feuerverger,et al. On the Efficiency of Empirical Characteristic Function Procedures , 1981 .
[16] Y. Davydov. Mixing Conditions for Markov Chains , 1974 .
[17] B. Schorr,et al. Numerical inversion of a class of characteristic functions , 1973 .
[18] Erhan Çinlar,et al. A stochastic integral in storage theory , 1971 .
[19] H. Tucker,et al. A Graduate Course in Probability , 1968 .
[20] H. Rubin,et al. Estimating the Parameters of a Differential Process , 1959 .
[21] Prof. Martino Grasselli. Stochastic volatility models , 2007 .
[22] N. Shephard,et al. Non‐Gaussian Ornstein–Uhlenbeck‐based models and some of their uses in financial economics , 2001 .
[23] E. Rio,et al. Théorie asymptotique de processus aléatoires faiblement dépendants , 2000 .
[24] N. Shephard,et al. Modelling by L´ evy Processes for Financial Econometrics , 2000 .
[25] C. LareÂdo,et al. Stochastic volatility models as hidden Markov models and statistical applications , 2000 .
[26] Richard L. Tweedie,et al. Markov Chains and Stochastic Stability , 1993, Communications and Control Engineering Series.
[27] M. Yor,et al. Continuous martingales and Brownian motion , 1990 .
[28] E. Nummelin. General irreducible Markov chains and non-negative operators: Notes and comments , 1984 .
[29] P. Brockwell,et al. Non‐Parametric Estimation for Non‐Decreasing Lévy Processes , 1982 .
[30] R. Getoor,et al. Markov Processes: Ray Processes and Right Processes , 1975 .
[31] G. Jameson. Topology and Normed Spaces , 1974 .
[32] Kai Lai Chung,et al. A Course in Probability Theory , 1949 .