Mixed Integer Evolution Strategies for Parameter Optimization

Evolution strategies (ESs) are powerful probabilistic search and optimization algorithms gleaned from biological evolution theory. They have been successfully applied to a wide range of real world applications. The modern ESs are mainly designed for solving continuous parameter optimization problems. Their ability to adapt the parameters of the multivariate normal distribution used for mutation during the optimization run makes them well suited for this domain. In this article we describe and study mixed integer evolution strategies (MIES), which are natural extensions of ES for mixed integer optimization problems. MIES can deal with parameter vectors consisting not only of continuous variables but also with nominal discrete and integer variables. Following the design principles of the canonical evolution strategies, they use specialized mutation operators tailored for the aforementioned mixed parameter classes. For each type of variable, the choice of mutation operators is governed by a natural metric for this variable type, maximal entropy, and symmetry considerations. All distributions used for mutation can be controlled in their shape by means of scaling parameters, allowing self-adaptation to be implemented. After introducing and motivating the conceptual design of the MIES, we study the optimality of the self-adaptation of step sizes and mutation rates on a generalized (weighted) sphere model. Moreover, we prove global convergence of the MIES on a very general class of problems. The remainder of the article is devoted to performance studies on artificial landscapes (barrier functions and mixed integer NK landscapes), and a case study in the optimization of medical image analysis systems. In addition, we show that with proper constraint handling techniques, MIES can also be applied to classical mixed integer nonlinear programming problems.

[1]  Johan H. C. Reiber,et al.  Multi-agent segmentation of IVUS images , 2004, Pattern Recognit..

[2]  Dirk Wiesmann,et al.  Metric Based Evolutionary Algorithms , 2000, EuroGP.

[3]  Thomas Bäck,et al.  Evolutionary algorithms in theory and practice - evolution strategies, evolutionary programming, genetic algorithms , 1996 .

[4]  David B. Fogel,et al.  Evolutionary algorithms in theory and practice , 1997, Complex.

[5]  Thomas Bäck,et al.  Metamodel-assisted mixed integer evolution strategies and their application to intravascular ultrasound image analysis , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[6]  Hans-Paul Schwefel,et al.  How to analyse evolutionary algorithms , 2002, Theor. Comput. Sci..

[7]  Christodoulos A. Floudas Generalized Benders Decomposition , 2009, Encyclopedia of Optimization.

[8]  Günter Rudolph,et al.  An Evolutionary Algorithm for Integer Programming , 1994, PPSN.

[9]  Martin Schütz,et al.  Application of Parallel Mixed-Integer Evolution Strategies with Mutation Rate Pooling , 1996, Evolutionary Programming.

[10]  Thomas Bäck,et al.  Mixed-Integer Evolution Strategies and Their Application to Intravascular Ultrasound Image Analysis , 2006, EvoWorkshops.

[11]  Hans-Paul Schwefel,et al.  Evolution and Optimum Seeking: The Sixth Generation , 1993 .

[12]  T. Westerlund,et al.  Convexification of different classes of non-convex MINLP problems , 1999 .

[13]  Anne Auger,et al.  Evolution Strategies , 2018, Handbook of Computational Intelligence.

[14]  John E. Mitchell,et al.  An improved branch and bound algorithm for mixed integer nonlinear programs , 1994, Comput. Oper. Res..

[15]  Christodoulos A. Floudas,et al.  Nonlinear and Mixed-Integer Optimization , 1995 .

[16]  Johan H. C. Reiber,et al.  User-Agent Cooperation in Multiagent IVUS Image Segmentation , 2009, IEEE Transactions on Medical Imaging.

[17]  Hans-Paul Schwefel,et al.  Evolution and optimum seeking , 1995, Sixth-generation computer technology series.

[18]  S. Kauffman,et al.  Towards a general theory of adaptive walks on rugged landscapes. , 1987, Journal of theoretical biology.

[19]  Xin Yao,et al.  Evolutionary Optimization , 2002 .

[20]  Günter Rudolph,et al.  Economic optimization of non-sharp separation sequences by means of evolutionary algorithms , 2008, Comput. Chem. Eng..

[21]  Xin Yao,et al.  Constrained Evolutionary Optimization , 2003 .

[22]  Laurence A. Wolsey,et al.  Integer and Combinatorial Optimization , 1988 .

[23]  Ofer M. Shir,et al.  Mixed-Integer Evolution Strategies with Dynamic Niching , 2008, PPSN.

[24]  X. Yuan,et al.  Une méthode d'optimisation non linéaire en variables mixtes pour la conception de procédés , 1988 .

[25]  X. Yao,et al.  Constrained Evolutionary Optimization - the penalty function approach , 2002 .

[26]  Christopher R. Houck,et al.  On the use of non-stationary penalty functions to solve nonlinear constrained optimization problems with GA's , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[27]  Michael T. M. Emmerich,et al.  Mixed-integer optimization of coronary vessel image analysis using evolution strategies , 2006, GECCO '06.

[28]  Thomas Bäck,et al.  Evolution Strategies for Mixed-Integer Optimization of Optical Multilayer Systems , 1995, Evolutionary Programming.

[29]  I. Grossmann,et al.  Global optimization of nonconvex mixed-integer nonlinear programming (MINLP) problems in process synthesis , 1988 .

[30]  R. J. Dakin,et al.  A tree-search algorithm for mixed integer programming problems , 1965, Comput. J..

[31]  Ignacio E. Grossmann,et al.  An outer-approximation algorithm for a class of mixed-integer nonlinear programs , 1987, Math. Program..

[32]  Xin Yao,et al.  Fast Evolution Strategies , 1997, Evolutionary Programming.

[33]  Michael Emmerich,et al.  Mixed-Integer Evolution Strategy for Chemical Plant Optimization with Simulators , 2000 .

[34]  C. Floudas Nonlinear and Mixed-Integer Optimization: Fundamentals and Applications , 1995 .

[35]  Reinhard Lohmann,et al.  Structure evolution and incomplete induction , 1993, Biological Cybernetics.

[36]  Christodoulos A. Floudas,et al.  Mixed Integer Nonlinear Programming , 2009, Encyclopedia of Optimization.

[37]  Bernd Groß Gesamtoptimierung verfahrenstechnischer Systeme mit evolutionären Algorithmen , 1999 .

[38]  Uwe Utecht,et al.  Mutation Operators for Structure Evolutionof Neural Networks , 1994, PPSN.

[39]  A I Oyman,et al.  Analysis of the (1, )-ES on the Parabolic Ridge , 2000, Evolutionary Computation.

[40]  Hans-Georg Beyer,et al.  The Theory of Evolution Strategies , 2001, Natural Computing Series.

[41]  Thomas Bäck,et al.  Mixed-Integer NK Landscapes , 2006, PPSN.

[42]  Michael T. M. Emmerich,et al.  Mixed-integer Bayesian Optimization Utilizing A-priori Knowledge on Parameter Dependences , 2008 .

[43]  Ted K. Ralphs,et al.  Integer and Combinatorial Optimization , 2013 .

[44]  Stephen R. Marsland,et al.  Convergence Properties of (μ + λ) Evolutionary Algorithms , 2011, AAAI.

[45]  Benjamin L. Schwartz,et al.  Queuing Models with Lane Selection: A New Class of Problems , 1974, Oper. Res..

[46]  John H. Holmes,et al.  Methods and applications of evolutionary computation in biomedicine , 2014, J. Biomed. Informatics.