Predictions for high-frequency radio surveys of extragalactic sources

We present detailed predictions of the contributions of the various source populations to the counts at frequen- cies of tens of GHz. New evolutionary models are worked out for flat-spectrum radio quasars, BL Lac objects, and steep- spectrum sources. Source populations characterized by spectra peaking at high radio frequencies, such as extreme GPS sources, ADAF/ADIOS sources and early phases of γ-ray burst afterglows are also dealt with. The counts of different populations of star-forming galaxies (normal spirals, starbursts, high-z galaxies detected by SCUBA and MAMBO surveys, interpreted as proto-spheroidal galaxies) are estimated taking into account both synchrotron and free-free emission, and dust re-radiation. Our analysis is completed by updated counts of Sunyaev-Zeldovich effects in clusters of galaxies and by a preliminary estimate of galactic-scale Sunyaev-Zeldovich signals associated to proto-galactic plasma.

[1]  Holland,et al.  Detection of Polarized Millimeter and Submillimeter Emission from Sagittarius A* , 2000, The Astrophysical journal.

[2]  P. Gregory,et al.  The 87GB catalog of radio sources covering delta between O and + 75 deg at 4. 85 GHz , 1991 .

[3]  C. O’Dea The Compact Steep‐Spectrum and Gigahertz Peaked‐Spectrum Radio Sources , 1998 .

[4]  Alessandro Bressan,et al.  Modeling the Effects of Dust on Galactic Spectral Energy Distributions from the Ultraviolet to the Millimeter Band , 1998 .

[5]  Spain.,et al.  Contributions of Point Extragalactic Sources to the Cosmic Microwave Background Bispectrum , 2003, astro-ph/0307148.

[6]  C. Frenk,et al.  The Evolution of X-Ray Clusters in a Low-Density Universe , 1997, astro-ph/9708070.

[7]  London,et al.  On the detectability of the Sunyaev–Zel'dovich effect of massive young galaxies , 2003, astro-ph/0311178.

[8]  M. Hardcastle,et al.  PARTICLES AND FIELDS IN RADIO GALAXIES , 2002 .

[9]  L. Toffolatti,et al.  Point source detection using the Spherical Mexican Hat Wavelet on simulated all-sky Planck maps , 2002, astro-ph/0212578.

[10]  Radio sources in the 2dF Galaxy Redshift Survey. , 2001, astro-ph/0106173.

[11]  E. Komatsu,et al.  Sunyaev-Zeldovich Fluctuations from Spatial Correlations between Clusters of Galaxies , 1999, The Astrophysical journal.

[12]  M. Rees,et al.  Core condensation in heavy halos: a two-stage theory for galaxy formation and clustering , 1978 .

[13]  Samuel J. LaRoque,et al.  Measurement of Arcminute-Scale Cosmic Microwave Background Anisotropy with the Berkeley-Illinois-Maryland Association Array , 2002 .

[14]  Roger D. Blandford,et al.  On the fate of gas accreting at a low rate on to a black hole , 1998, astro-ph/9809083.

[15]  P. Peebles Principles of Physical Cosmology , 1993 .

[16]  E. Waxman γ-Ray Burst Afterglow: Confirming the Cosmological Fireball Model , 1997, astro-ph/9705229.

[17]  S. Borgani,et al.  Scaling laws in X-ray galaxy clusters at redshift between 0.4 and 1.3 , 2004 .

[18]  UCLA,et al.  Chandra X-Ray Spectroscopic Imaging of Sagittarius A* and the Central Parsec of the Galaxy , 2001, astro-ph/0102151.

[19]  H. Bondi,et al.  On spherically symmetrical accretion , 1952 .

[20]  Cosmic microwave background power spectrum estimation and map reconstruction with the expectation-maximization algorithm , 2003, astro-ph/0302094.

[21]  P. Mazzotta,et al.  Intracluster Comptonization of the Cosmic Microwave Background: Mean Spectral Distortion and Cluster Number Counts , 1997, astro-ph/9703121.

[22]  C. Carilli,et al.  Cygnus A : study of a radio galaxy : proceedings of the Greenbank workshop, held in Greenbank, West Virginia, May 1-4, 1995 , 1996 .

[23]  T. D. Matteo,et al.  Synchrotron Emission from Hot Accretion Flows and the Cosmic Microwave Background Anisotropy , 2000, astro-ph/0005244.

[24]  E. Phinney,et al.  Ion-supported tori and the origin of radio jets , 1982, Nature.

[25]  James J. Condon,et al.  Radio Emission from Normal Galaxies , 1992 .

[26]  P. Panuzzo,et al.  Joint formation of QSOs and spheroids: QSOs as clocks of star formation in spheroids , 1999, astro-ph/9911304.

[27]  J. Carlstrom,et al.  Detection of polarization in the cosmic microwave background using DASI , 2002, Nature.

[28]  L. Toffolatti,et al.  Extragalactic source counts and contributions to the anisotropies of the cosmic microwave background: predictions for the Planck Surveyor mission , 1998 .

[29]  A Physical Model for the Coevolution of QSOs and Their Spheroidal Hosts , 2003, astro-ph/0307202.

[30]  R. Sheth,et al.  Ellipsoidal collapse and an improved model for the number and spatial distribution of dark matter haloes , 1999, astro-ph/9907024.

[31]  De Bruyn,et al.  PARTICLES AND FIELDS IN RADIO GALAXIES , 2002 .

[32]  R. B. Partridge,et al.  Possible Radio Afterglow of a 1989 Gamma‐Ray Burst , 2001 .

[33]  A. Readhead,et al.  Compact Symmetric Objects and the Evolution of Powerful Extragalactic Radio Sources , 1996 .

[34]  Limits on the accretion rates onto massive black holes in nearby galaxies , 2000, astro-ph/0005516.

[35]  Inverse temperature dependence of the dust submillimeter spectral index , 2003, astro-ph/0310091.

[36]  I. Hook,et al.  The Parkes quarter-Jansky flat-spectrum sample. I. Sample selection and source identifications , 2002 .

[37]  E. Fomalont,et al.  The 5 GHz strong source surveys. IV. Survey of the area between declination 35 and 70 degrees and summary of source counts, spectra and optical identifications. , 1978 .

[38]  J. Dunlop,et al.  The redshift cut-off in the luminosity function of radio galaxies and quasars. , 1990 .

[39]  S. Serjeant,et al.  The Nature of the Faint Radio Source Population and Star Formation History derived from Sub-MJY Surveys , 2001 .

[40]  Edinburgh,et al.  Strong observational constraints on advection-dominated accretion in the cores of elliptical galaxies , 1998, astro-ph/9807245.

[41]  M. White,et al.  Power-spectrum normalization from the local abundance of rich clusters of galaxies , 2001 .

[42]  E. Agol Sagittarius A* Polarization: No Advection-dominated Accretion Flow, Low Accretion Rate, and Nonthermal Synchrotron Emission , 2000 .

[43]  S. Borgani,et al.  On determining the cluster abundance normalization , 2003 .

[44]  George Helou,et al.  Thermal infrared and nonthermal radio: remarkable correlation in disks of galaxies , 1985 .

[45]  A. Readhead,et al.  Kinematic Age Estimates for Four Compact Symmetric Objects from the Pearson-Readhead Survey , 2000, astro-ph/0005209.

[46]  J. Peacock The high-redshift evolution of radio galaxies and quasars , 1985 .

[47]  M. Garrett The FIR/Radio correlation of high redshift galaxies in the region of the HDF-N , 2001, astro-ph/0108313.

[48]  P. Capak,et al.  The Properties of Microjansky Radio Sources in the Hubble Deep Field-North, SSA 13, and SSA 22 Fields , 2002, astro-ph/0211075.

[49]  Cosmological constraints from the X-ray gas mass fraction in relaxed lensing clusters observed with Chandra , 2002, astro-ph/0205007.

[50]  Expected Number and Flux Distribution of Gamma-Ray Burst Afterglows with High Redshifts , 2000, astro-ph/0002412.

[51]  G. Bryan,et al.  Statistical Properties of X-Ray Clusters: Analytic and Numerical Comparisons , 1997, astro-ph/9710107.

[52]  The radio source counts at 15 GHz and their implications for cm-wave CMB imaging , 2001, astro-ph/0102497.

[53]  D. Spergel,et al.  Extragalactic Foregrounds of the Cosmic Microwave Background: Prospects for the MAP Mission , 1998, astro-ph/9806349.

[54]  9C: a survey of radio sources at 15 GHz with the Ryle Telescope , 2003, astro-ph/0304275.

[55]  G. Helou,et al.  A deep wsrt 1.4 ghz radio survey of the spitzer space telescope flsv region , 2004, astro-ph/0405418.

[56]  Sunyaev–Zel'dovich effect from quasar-driven blast waves , 2002, astro-ph/0206079.

[57]  H. Rottgering,et al.  On the evolution of young radio-loud AGN , 2000, astro-ph/0002130.

[58]  G. Gavazzi,et al.  On the Dependence of Far-Infrared and Radio Continuum Luminosities on Hubble Type in Spiral Galaxies , 1986 .

[59]  The Anisotropy of the Microwave Background to l = 3500: Mosaic Observations with the Cosmic Background Imager , 2002, astro-ph/0205388.

[60]  Yasuo Tanaka,et al.  A new measurement of the X-ray temperature function of clusters of galaxies , 2001, astro-ph/0112315.

[61]  A. Jaffe,et al.  Secondary Cosmic Microwave Background Anisotropies from Cosmological Reionization , 2000, astro-ph/0008469.

[62]  S. C. Madden,et al.  ISM properties in low-metallicity environments II. The dust spectral energy distribution of NGC 1569 , 2003, astro-ph/0306192.

[63]  William H. Press,et al.  Book-Review - Numerical Recipes in Pascal - the Art of Scientific Computing , 1989 .

[64]  A. Readhead,et al.  Compact Symmetric Objects in a complete flux density limited sample , 1999 .

[65]  W. Foster Diffusion and heat conduction: A brief survey of numerical methods , 1972 .

[66]  Radio Point Sources and the Thermal Sunyaev-Zeldovich Power Spectrum , 2002, astro-ph/0205467.

[67]  Edward J. Wollack,et al.  First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Foreground Emission , 2003, astro-ph/0302208.

[68]  Wijers,et al.  UvA-DARE ( Digital Academic Repository ) Physical parametres of GRB 970508 and GRB 971214 from their afterglow synchroton emission , 1999 .

[69]  K. I. Kellermann,et al.  The Microjansky Sky at 8.4 GHz , 2002 .

[70]  N. Gehrels Confidence limits for small numbers of events in astrophysical data , 1986 .

[71]  P. Gregory,et al.  The GB6 Catalog of Radio Sources , 1996 .

[72]  A. Cavaliere,et al.  Sunyaev-Zel’dovich Effects from Quasars in Galaxies and Groups , 2003, astro-ph/0309729.

[73]  M. Rees,et al.  Cooling, dynamics and fragmentation of massive gas clouds: clues to the masses and radii of galaxies and clusters , 1977 .

[74]  D. Herranz,et al.  Point source detection and extraction from simulated Planck time-ordered data using optimal adaptive filters , 2002 .

[75]  Radio source contamination of the Sunyaev-Zeldovich effect in galaxy clusters , 2004, astro-ph/0405323.

[76]  S. P. Oh Observational Signatures of the First Luminous Objects , 1999, astro-ph/9904255.