Modular Dynamic Biomolecular Modelling: The Unification of Stoichiometry, Thermodynamics, Kinetics and Data

Renewed interest in dynamic simulation models of biomolecular systems has arisen from advances in genome-wide measurement and applications of such models in biotechnology and synthetic biology. In particular, genome-scale models of cellular metabolism beyond the steady state are required in order to represent transient and dynamic regulatory properties of the system. Development of such whole-cell models requires new modelling approaches. Here we propose the energy-based bond graph methodology, which integrates stoichiometric models with thermo-dynamic principles and kinetic modelling. We demonstrate how the bond graph approach intrinsically enforces thermodynamic constraints, provides a modular approach to modelling, and gives a basis for estimation of model parameters leading to dynamic models of biomolecular systems. The approach is illustrated using a well-established stoichiometric model of E. coli and published experimental data.

[1]  Jonathan M. Monk,et al.  Experimentally Validated Reconstruction and Analysis of a Genome-Scale Metabolic Model of an Anaerobic Neocallimastigomycota Fungus , 2021, mSystems.

[2]  Peter J Gawthrop,et al.  Energy-Based Modeling of the Feedback Control of Biomolecular Systems With Cyclic Flow Modulation , 2020, IEEE Transactions on NanoBioscience.

[3]  P. Gawthrop,et al.  Network Thermodynamical Modeling of Bioelectrical Systems: A Bond Graph Approach. , 2020, Bioelectricity.

[4]  B. Palsson,et al.  Reconstructing organisms in silico: genome-scale models and their emerging applications , 2020, Nature Reviews Microbiology.

[5]  Bernhard O. Palsson,et al.  MASSpy: Building, simulating, and visualizing dynamic biological models in Python using mass action kinetics , 2020, bioRxiv.

[6]  Maria Masid,et al.  Analysis of human metabolism by reducing the complexity of the genome-scale models using redHUMAN , 2020, Nature Communications.

[7]  L. Lynd,et al.  In Vivo Thermodynamic Analysis of Glycolysis in Clostridium thermocellum and Thermoanaerobacterium saccharolyticum Using 13C and 2H Tracers , 2020, mSystems.

[8]  Costas Maranas,et al.  K-FIT: An accelerated kinetic parameterization algorithm using steady-state fluxomic data. , 2020, Metabolic engineering.

[9]  Vassily Hatzimanikatis,et al.  The ETFL formulation allows multi-omics integration in thermodynamics-compliant metabolism and expression models , 2020, Nature Communications.

[10]  Edmund J. Crampin,et al.  Physically-Plausible Modelling of Biomolecular Systems: A Simplified, Energy-Based Model of the Mitochondrial Electron Transport Chain. , 2019, Journal of theoretical biology.

[11]  P. Gawthrop,et al.  The cardiac Na+/K+ ATPase: An updated, thermodynamically consistent model , 2017, Physiome.

[12]  Bernhard O Palsson,et al.  Genome-scale model of metabolism and gene expression provides a multi-scale description of acid stress responses in Escherichia coli , 2019, PLoS Comput. Biol..

[13]  Sophia Hsin-Jung Li,et al.  Near-equilibrium glycolysis supports metabolic homeostasis and energy yield , 2019, Nature Chemical Biology.

[14]  Charles J Foster,et al.  From Escherichia coli mutant 13C labeling data to a core kinetic model: A kinetic model parameterization pipeline , 2019, PLoS Comput. Biol..

[15]  Edmund J. Crampin,et al.  Computer-aided modelling of complex physical systems with BondGraphTools , 2019, ArXiv.

[16]  Uwe Sauer,et al.  Biological insights through omics data integration , 2019, Current Opinion in Systems Biology.

[17]  Costas D. Maranas,et al.  K-FIT: An accelerated kinetic parameterization algorithm using steady-state fluxomic data , 2019, bioRxiv.

[18]  Wolfram Liebermeister,et al.  Parameter balancing: consistent parameter sets for kinetic metabolic models , 2019, Bioinform..

[19]  John C Mason,et al.  An energetic reformulation of kinetic rate laws enables scalable parameter estimation for biochemical networks. , 2019, Journal of theoretical biology.

[20]  John H. Gennari,et al.  SemGen: a tool for semantics-based annotation and composition of biosimulation models , 2018, Bioinform..

[21]  P. Gawthrop,et al.  A thermodynamic framework for modelling membrane transporters. , 2018, Journal of theoretical biology.

[22]  Edmund J. Crampin,et al.  Biomolecular System Energetics , 2018, 1803.09231.

[23]  E. Noor Removing both Internal and Unrealistic Energy-Generating Cycles in Flux Balance Analysis , 2018, 1803.04999.

[24]  Edmund J Crampin,et al.  Bond graph modelling of the cardiac action potential: implications for drift and non-unique steady states , 2018, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[25]  Jonathan R. Karr,et al.  A blueprint for human whole-cell modeling. , 2018, Current opinion in systems biology.

[26]  P. Gawthrop Computing Biomolecular System Steady-States , 2017, IEEE Transactions on NanoBioscience.

[27]  Pedro A Saa,et al.  Formulation, construction and analysis of kinetic models of metabolism: A review of modelling frameworks. , 2017, Biotechnology advances.

[28]  Boris N. Kholodenko,et al.  Performance of objective functions and optimisation procedures for parameter estimation in system biology models , 2017, npj Systems Biology and Applications.

[29]  Edward J. O'Brien,et al.  COBRAme: A computational framework for genome-scale models of metabolism and gene expression , 2017, bioRxiv.

[30]  Peter J. Gawthrop,et al.  Bond Graph Modeling of Chemiosmotic Biomolecular Energy Transduction , 2016, IEEE Transactions on NanoBioscience.

[31]  Edmund J Crampin,et al.  Energy-based analysis of biomolecular pathways , 2016, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[32]  Edmund J. Crampin,et al.  Bond graph modelling of chemoelectrical energy transduction , 2015, 1512.00956.

[33]  Peter Hunter,et al.  The Virtual Physiological Human: The Physiome Project Aims to Develop Reproducible, Multiscale Models for Clinical Practice , 2016, IEEE Pulse.

[34]  Neil Swainston,et al.  Recon 2.2: from reconstruction to model of human metabolism , 2016, Metabolomics.

[35]  T. Shlomi,et al.  Metabolite concentrations, fluxes, and free energies imply efficient enzyme usage , 2016, Nature chemical biology.

[36]  Edmund J Crampin,et al.  Modular bond-graph modelling and analysis of biomolecular systems. , 2015, IET systems biology.

[37]  Edmund J. Crampin,et al.  Semantics-Based Composition of Integrated Cardiomyocyte Models Motivated by Real-World Use Cases , 2015, PloS one.

[38]  Bernhard O. Palsson,et al.  Escher: A Web Application for Building, Sharing, and Embedding Data-Rich Visualizations of Biological Pathways , 2015, PLoS Comput. Biol..

[39]  Edmund J. Crampin,et al.  Hierarchical bond graph modelling of biochemical networks , 2015, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[40]  B. Palsson Systems Biology: Constraint-based Reconstruction and Analysis , 2015 .

[41]  Markus W. Covert,et al.  Fundamentals of Systems Biology: From Synthetic Circuits to Whole-cell Models , 2014 .

[42]  John H. Gennari,et al.  A Reappraisal of How to Build Modular, Reusable Models of Biological Systems , 2014, PLoS Comput. Biol..

[43]  N. Hay,et al.  The pentose phosphate pathway and cancer. , 2014, Trends in biochemical sciences.

[44]  Edmund J Crampin,et al.  Energy-based analysis of biochemical cycles using bond graphs , 2014, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[45]  M. Esposito,et al.  Irreversible thermodynamics of open chemical networks. I. Emergent cycles and broken conservation laws. , 2014, The Journal of chemical physics.

[46]  Wolfram Liebermeister,et al.  Pathway Thermodynamics Highlights Kinetic Obstacles in Central Metabolism , 2014, PLoS Comput. Biol..

[47]  Gawthrop A tutorial introduction for control engineers , 2014 .

[48]  E. Seibert,et al.  Fundamentals of enzyme kinetics. , 2014, Methods in molecular biology.

[49]  P. Mendes,et al.  Systematic Construction of Kinetic Models from Genome-Scale Metabolic Networks , 2013, PloS one.

[50]  P. Mendes,et al.  Large-Scale Metabolic Models: From Reconstruction to Differential Equations , 2013 .

[51]  Antonis Papachristodoulou,et al.  A single phosphatase can convert a robust step response into a graded, tunable or adaptive response. , 2013, Microbiology.

[52]  Singiresu S Rao,et al.  A Comparative Study of Evidence Theories in the Modeling, Analysis, and Design of Engineering Systems , 2013 .

[53]  Ronan M. T. Fleming,et al.  A community-driven global reconstruction of human metabolism , 2013, Nature Biotechnology.

[54]  Joshua A. Lerman,et al.  COBRApy: COnstraints-Based Reconstruction and Analysis for Python , 2013, BMC Systems Biology.

[55]  Jonathan R. Karr,et al.  A Whole-Cell Computational Model Predicts Phenotype from Genotype , 2012, Cell.

[56]  Adam M. Feist,et al.  A comprehensive genome-scale reconstruction of Escherichia coli metabolism—2011 , 2011, Molecular systems biology.

[57]  Bernhard O. Palsson,et al.  Systems Biology: Simulation of Dynamic Network States , 2011 .

[58]  B. Palsson,et al.  Elimination of thermodynamically infeasible loops in steady-state metabolic models. , 2011, Biophysical journal.

[59]  Jeffrey D Orth,et al.  What is flux balance analysis? , 2010, Nature Biotechnology.

[60]  Ronan M. T. Fleming,et al.  Reconstruction and Use of Microbial Metabolic Networks: the Core Escherichia coli Metabolic Model as an Educational Guide. , 2010, EcoSal Plus.

[61]  Neema Jamshidi,et al.  Mass action stoichiometric simulation models: incorporating kinetics and regulation into stoichiometric models. , 2010, Biophysical journal.

[62]  Mathieu Cloutier,et al.  The control systems structures of energy metabolism , 2010, Journal of The Royal Society Interface.

[63]  L. Cantley,et al.  Understanding the Warburg Effect: The Metabolic Requirements of Cell Proliferation , 2009, Science.

[64]  Maksat Ashyraliyev,et al.  Systems biology: parameter estimation for biochemical models , 2009, The FEBS journal.

[65]  Ernst Dieter Gilles,et al.  Thermodynamic Constraints in Kinetic Modeling: Thermodynamic‐Kinetic Modeling in Comparison to Other Approaches , 2008 .

[66]  E. Gilles,et al.  Thermodynamically feasible kinetic models of reaction networks. , 2007, Biophysical journal.

[67]  V. Hatzimanikatis,et al.  Thermodynamics-based metabolic flux analysis. , 2007, Biophysical journal.

[68]  B. Palsson Systems Biology: Properties of Reconstructed Networks , 2006 .

[69]  H. Qian,et al.  Metabolic futile cycles and their functions: a systems analysis of energy and control. , 2005, Systems biology.

[70]  Martin J. Kushmerick,et al.  A Computational Model for Glycogenolysis in Skeletal Muscle , 2002, Annals of Biomedical Engineering.

[71]  D. Loo,et al.  Electrogenic properties of the cloned Na+/glucose cotransporter: I. Voltage-clamp studies , 2004, The Journal of Membrane Biology.

[72]  H. Qian,et al.  Stoichiometric network theory for nonequilibrium biochemical systems. , 2003, European journal of biochemistry.

[73]  H. Qian,et al.  Energy balance for analysis of complex metabolic networks. , 2002, Biophysical journal.

[74]  B. Palsson,et al.  Theory for the systemic definition of metabolic pathways and their use in interpreting metabolic function from a pathway-oriented perspective. , 2000, Journal of theoretical biology.

[75]  Dean Karnopp,et al.  System Dynamics: Modeling, Simulation, and Control of Mechatronic Systems , 1999 .

[76]  R. Heinrich,et al.  The Regulation of Cellular Systems , 1996, Springer US.

[77]  Peter J. Gawthrop,et al.  Metamodelling: for bond graphs and dynamic systems , 1996 .

[78]  R. Fletcher Practical Methods of Optimization , 1988 .

[79]  Roger Fletcher,et al.  Practical methods of optimization; (2nd ed.) , 1987 .

[80]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[81]  B Crabtree,et al.  Substrate cycles: their role in improving sensitivity in metabolic control , 1984 .

[82]  A. Perelson Network thermodynamics. An overview. , 1975, Biophysical journal.

[83]  A Katchalsky,et al.  Network thermodynamics: dynamic modelling of biophysical systems , 1973, Quarterly Reviews of Biophysics.

[84]  G. Oster,et al.  Network Thermodynamics , 1971, Nature.

[85]  Pierre Van Rysselberghe,et al.  Reaction Rates and Affinities , 1958 .