Probing number squeezing of ultracold atoms across the superfluid-Mott insulator transition.

The evolution of on-site number fluctuations of ultracold atoms in optical lattices is experimentally investigated by monitoring the suppression of spin-changing collisions across the superfluid-Mott insulator transition. For low atom numbers, corresponding to an average filling factor close to unity, large on-site number fluctuations are necessary for spin-changing collisions to occur. The continuous suppression of spin-changing collisions is thus direct evidence for the emergence of number-squeezed states. In the Mott insulator regime, we find that spin-changing collisions are suppressed until a threshold atom number, consistent with the number where a Mott plateau with doubly occupied sites is expected to form.

[1]  T. Esslinger,et al.  Molecules of fermionic atoms in an optical lattice. , 2005, Physical review letters.

[2]  O. Mandel,et al.  Coherent collisional spin dynamics in optical lattices. , 2005, Physical review letters.

[3]  S. Vishveshwara,et al.  Structure and stability of Mott-insulator shells of bosons trapped in an optical lattice , 2005, cond-mat/0501718.

[4]  J. Dunningham,et al.  Sub-shot-noise-limited measurements with Bose-Einstein condensates , 2004 .

[5]  Immanuel Bloch,et al.  State selective production of molecules in optical lattices. , 2004, Physical review letters.

[6]  M. Olsen,et al.  Occupation number and fluctuations in the finite-temperature Bose-Hubbard model , 2004 .

[7]  Dla Polski,et al.  EURO , 2004 .

[8]  T. Esslinger,et al.  Transition from a strongly interacting 1d superfluid to a Mott insulator. , 2003, Physical review letters.

[9]  T. Hänsch,et al.  Entanglement interferometry for precision measurement of atomic scattering properties. , 2003, Physical review letters.

[10]  A. Aspect,et al.  Critical temperature of a trapped, weakly interacting Bose gas. , 2003, Physical review letters.

[11]  J. Cirac,et al.  Variational ansatz for the superfluid Mott-insulator transition in optical lattices. , 2003, Optics express.

[12]  M. Yamashita,et al.  Signatures of the quantum fluctuations of cold atoms in an optical lattice in the three-body loss rate , 2003 .

[13]  R. Roth,et al.  Superfluidity and interference pattern of ultracold bosons in optical lattices , 2002, cond-mat/0209066.

[14]  D. Roberts,et al.  Probing states in the Mott insulator regime in the case of coherent bosons trapped in an optical lattice. , 2002, Physical review letters.

[15]  Immanuel Bloch,et al.  Collapse and revival of the matter wave field of a Bose–Einstein condensate , 2002, Nature.

[16]  A Gutzwiller approach to squeezed states in an optical lattice , 2002 .

[17]  C. Clark,et al.  The Bogoliubov approach to number squeezing of atoms in an optical lattice , 2002 .

[18]  R. Scalettar,et al.  Mott domains of bosons confined on optical lattices. , 2002, Physical review letters.

[19]  B. Svistunov,et al.  Revealing the superfluid–Mott-insulator transition in an optical lattice , 2002, cond-mat/0202510.

[20]  T. Hänsch,et al.  Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms , 2002, Nature.

[21]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[22]  M. Kasevich,et al.  Squeezed States in a Bose-Einstein Condensate , 2001, Science.

[23]  J. Cirac,et al.  Many-particle entanglement with Bose–Einstein condensates , 2000, Nature.

[24]  P. Straten,et al.  Quantum phases in an optical lattice , 2000, cond-mat/0011108.

[25]  P. Meystre,et al.  Creating macroscopic atomic Einstein-Podolsky-Rosen states from Bose-Einstein condensates. , 2000, Physical review letters.

[26]  H. Walther,et al.  Preparing pure photon number states of the radiation field , 2000, Nature.

[27]  J. Javanainen Phonon approach to an array of traps containing Bose-Einstein condensates , 1999 .

[28]  C. Gardiner,et al.  Cold Bosonic Atoms in Optical Lattices , 1998, cond-mat/9805329.

[29]  Dreyer,et al.  Quantum Rabi oscillation: A direct test of field quantization in a cavity. , 1996, Physical review letters.

[30]  H. R. Krishnamurthy,et al.  Superfluid and insulating phases in an interacting-boson model: mean-field theory and the RPA , 1993 .