HLA‐DR3 mediated CD4 T cell response against GAD65 in type 1 diabetes patients

We planned this study to identify diabetogenic glutamic acid decarboxylase (GAD65) peptides possibly responsible for human leucocyte antigen (HLA)‐DR3/DQ2‐mediated activation of GAD65‐specific CD4 T cells in type 1 diabetes (T1D).

[1]  Xia Li,et al.  GAD65 Antibody Epitopes and Genetic Background in Latent Autoimmune Diabetes in Youth (LADY) , 2022, Frontiers in Immunology.

[2]  N. Mehra,et al.  Differential HLA Association of GAD65 and IA2 Autoantibodies in North Indian Type 1 Diabetes Patients , 2021, Journal of diabetes research.

[3]  Hakeem G. Almabrazi,et al.  Clinical features, epidemiology, autoantibody status, HLA haplotypes and genetic mechanisms of type 1 diabetes mellitus among children in Qatar , 2021, Scientific Reports.

[4]  Wei-Wei Zhang,et al.  IL-17A is involved in diabetic inflammatory pathogenesis by its receptor IL-17RA , 2020, Experimental biology and medicine.

[5]  H. Siljander,et al.  Dynamics of Islet Autoantibodies During Prospective Follow-Up From Birth to Age 15 Years , 2020, The Journal of clinical endocrinology and metabolism.

[6]  N. Tandon,et al.  Diverse human leukocyte antigen association of type 1 diabetes in north India , 2019, Journal of diabetes.

[7]  Zihan Zheng,et al.  A complex auxiliary: IL‐17/Th17 signaling during type 1 diabetes progression , 2019, Molecular immunology.

[8]  Jason S. Mitchell,et al.  Interferon-gamma drives programmed death-ligand 1 expression on islet β cells to limit T cell function during autoimmune diabetes , 2018, Scientific Reports.

[9]  G. Allam,et al.  The potential pathogenic role of IL-17/Th17 cells in both type 1 and type 2 diabetes mellitus. , 2018, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.

[10]  F. Lo,et al.  Autoantibodies against islet cell antigens in children with type 1 diabetes mellitus , 2018, Oncotarget.

[11]  Adam L. Burrack,et al.  T Cell-Mediated Beta Cell Destruction: Autoimmunity and Alloimmunity in the Context of Type 1 Diabetes , 2017, Front. Endocrinol..

[12]  C. Mathews,et al.  Type I Interferon Is a Catastrophic Feature of the Diabetic Islet Microenvironment , 2017, Front. Endocrinol..

[13]  A. Pugliese,et al.  Autoreactive T cells in type 1 diabetes. , 2017, The Journal of clinical investigation.

[14]  A. Steck,et al.  T1D Autoantibodies: room for improvement? , 2017, Current opinion in endocrinology, diabetes, and obesity.

[15]  V. Mohan,et al.  Registry of Youth Onset Diabetes in India (YDR) , 2016, Journal of diabetes science and technology.

[16]  E. Bonifacio,et al.  The 6 year incidence of diabetes-associated autoantibodies in genetically at-risk children: the TEDDY study , 2015, Diabetologia.

[17]  P. Santamaria,et al.  MHC Class II Polymorphisms, Autoreactive T-Cells, and Autoimmunity , 2013, Front. Immunol..

[18]  N. Tandon,et al.  Genomic evaluation of HLA‐DR3+ haplotypes associated with type 1 diabetes , 2013, Annals of the New York Academy of Sciences.

[19]  Junbao Yang,et al.  CD4+ T cells recognize diverse epitopes within GAD65: implications for repertoire development and diabetes monitoring , 2013, Immunology.

[20]  M. Peakman,et al.  Antigen targets of type 1 diabetes autoimmunity. , 2012, Cold Spring Harbor perspectives in medicine.

[21]  M. Rewers,et al.  The interplay of autoimmunity and insulin resistance in type 1 diabetes. , 2012, Discovery medicine.

[22]  M. Atkinson,et al.  Demonstration of islet-autoreactive CD8 T cells in insulitic lesions from recent onset and long-term type 1 diabetes patients , 2012, The Journal of experimental medicine.

[23]  N. Mehra,et al.  Utility of saliva and hair follicles in donor selection for hematopoietic stem cell transplantation and chimerism monitoring , 2012, Chimerism.

[24]  M. Pietropaolo,et al.  GAD65 autoantibodies and its role as biomarker of Type 1 diabetes and Latent Autoimmune Diabetes in Adults (LADA). , 2011, Drugs of the future.

[25]  P. Marrack,et al.  Specificity and detection of insulin-reactive CD4+ T cells in type 1 diabetes in the nonobese diabetic (NOD) mouse , 2011, Proceedings of the National Academy of Sciences.

[26]  P. Bingley,et al.  Evidence That HLA Class I and II Associations With Type 1 Diabetes, Autoantibodies to GAD and Autoantibodies to IA-2, Are Distinct , 2011, Diabetes.

[27]  J. Todd,et al.  Genetic Analysis of Adult-Onset Autoimmune Diabetes , 2011, Diabetes.

[28]  W. Almawi,et al.  Glutamic Acid Decarboxylase 65 and Islet Cell Antigen 512/IA-2 Autoantibodies in Relation to Human Leukocyte Antigen Class II DR and DQ Alleles and Haplotypes in Type 1 Diabetes Mellitus , 2011, Clinical and Vaccine Immunology.

[29]  J. Ilonen,et al.  IL-17 Immunity in Human Type 1 Diabetes , 2010, The Journal of Immunology.

[30]  Johnny Ludvigsson,et al.  GAD treatment and insulin secretion in recent-onset type 1 diabetes. , 2008, The New England journal of medicine.

[31]  V. Kuchroo,et al.  Interplay Between Effector Th17 and Regulatory T Cells , 2008, Journal of Clinical Immunology.

[32]  J. Barker,et al.  Autoantibodies in type 1 diabetes , 2008, Autoimmunity.

[33]  E. Bonifacio,et al.  GAD Autoantibody Affinity and Epitope Specificity Identify Distinct Immunization Profiles in Children at Risk for Type 1 Diabetes , 2007, Diabetes.

[34]  M. Peakman,et al.  Translational Mini‐Review Series on Type 1 Diabetes:
Systematic analysis of T cell epitopes in autoimmune diabetes , 2007, Clinical and experimental immunology.

[35]  N. Tandon,et al.  Biomarkers of susceptibility to type 1 diabetes with special reference to the Indian population. , 2007, The Indian journal of medical research.

[36]  H. Mcdevitt,et al.  The role of TNF- (cid:1) in the pathogenesis of type 1 diabetes in the nonobese diabetic mouse: Analysis of dendritic cell maturation , 2005 .

[37]  H. Mcdevitt,et al.  Prevention of type I diabetes transfer by glutamic acid decarboxylase 65 peptide 206-220-specific T cells. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[38]  Mark Peakman,et al.  Autoreactive T cell responses show proinflammatory polarization in diabetes but a regulatory phenotype in health. , 2004, The Journal of clinical investigation.

[39]  P. Snow,et al.  Induction of Autoantigen-Specific Th2 and Tr1 Regulatory T Cells and Modulation of Autoimmune Diabetes1 , 2003, The Journal of Immunology.

[40]  H. Mcdevitt,et al.  CD4+ T Cells from Glutamic Acid Decarboxylase (GAD)65-specific T Cell Receptor Transgenic Mice Are Not Diabetogenic and Can Delay Diabetes Transfer , 2002, The Journal of experimental medicine.

[41]  R. Flavell,et al.  A Dual Role for TNF-α in Type 1 Diabetes: Islet-Specific Expression Abrogates the Ongoing Autoimmune Process When Induced Late but Not Early During Pathogenesis1 , 2001, The Journal of Immunology.

[42]  E. Sercarz,et al.  Regulatory and Effector CD4 T Cells in Nonobese Diabetic Mice Recognize Overlapping Determinants on Glutamic Acid Decarboxylase and Use Distinct Vβ Genes1 , 2001, The Journal of Immunology.

[43]  R. Tisch,et al.  Induction of glutamic acid decarboxylase 65-specific Th2 cells and suppression of autoimmune diabetes at late stages of disease is epitope dependent. , 1999, Journal of immunology.

[44]  G. Benichou,et al.  Differential activation of T cells by natural antigen peptide analogues: influence on autoimmune and alloimmune in vivo T cell responses. , 1998, Journal of immunology.

[45]  H. Erlich,et al.  Genetics of type 1 diabetes. , 2012, Cold Spring Harbor perspectives in medicine.

[46]  P. Bingley Clinical applications of diabetes antibody testing. , 2010, The Journal of clinical endocrinology and metabolism.

[47]  H. Mugishima,et al.  Differences in prevalence of antibodies to GAD and IA-2 and their titers at diagnosis in children with slowly and rapidly progressive forms of type 1 diabetes. , 2009, Diabetes research and clinical practice.

[48]  H. Mcdevitt,et al.  The role of TNF-alpha in the pathogenesis of type 1 diabetes in the nonobese diabetic mouse: analysis of dendritic cell maturation. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[49]  N. Mehra,et al.  HLA haplotypes associated with type 1 diabetes mellitus in North Indian children. , 2004, Human immunology.

[50]  G. Soltész,et al.  Prevalence and HLA association of GAD65 antibodies in Hungarian schoolchildren. , 2003, Human immunology.

[51]  F. Wong,et al.  GAD-reactive CD4+ Th1 cells induce diabetes in NOD/SCID mice. , 1998, The Journal of clinical investigation.

[52]  W. Scherbaum,et al.  GAD65 is recognized by T-cells, but not by antibodies from NOD-mice. , 1994, Autoimmunity.