Energy rate density as a complexity metric and evolutionary driver

The proposition that complexity generally increases with evolution seems indisputable. Both developmental and generational changes often display a rise in the number and diversity of properties describing a wide spectrum of ordered systems, whether physical, biological, or cultural. This article explores a quantitative metric that can help to explain the emergence and evolution of galaxies, stars, planets, and life throughout the history of the Universe. Energy rate density is a single, measurable, and unambiguous quantity uniformly characterizing Nature's many varied complex systems, potentially dictating their natural selection on vast spatial and temporal scales. © 2010 Wiley Periodicals, Inc. Complexity 16: 27–40, 2011 © 2011 Wiley Periodicals, Inc.

[1]  Marten Scheffer,et al.  The angiosperm radiation revisited, an ecological explanation for Darwin’s ‘abominable mystery’ , 2009, Ecology letters.

[2]  K. Kraemer,et al.  Our Sun. III. Present and Future , 1993 .

[3]  R M May,et al.  Mass and energy flow in closed ecosystems: a comment. , 1973, Journal of theoretical biology.

[4]  Christopher Potter,et al.  Terrestrial Biomass and the Effects of Deforestation on the Global Carbon Cycle , 1999 .

[5]  Mohammad Pessarakli,et al.  Handbook of Photosynthesis , 2005 .

[6]  D. Beerling The Emerald Planet , 2007 .

[7]  Eric J. Chaisson,et al.  Cosmic Evolution State of the Science , 2009 .

[8]  M. McDonald,et al.  Photobiology of Higher Plants , 2003 .

[9]  A. Galston Life processes of plants , 1994 .

[10]  Paul J. Pugliese Maps in TIME , 1987 .

[11]  I. Simmons Changing the face of the earth , 1989 .

[12]  E. Chaisson A unifying concept for astrobiology , 2003, International Journal of Astrobiology.

[13]  James C. Williams,et al.  Energy in World History , 1994 .

[14]  A. C. Haddon,et al.  The Evolution of Culture , 1932, Nature.

[15]  Eric J. Chaisson,et al.  Exobiology and Complexity , 2009, Encyclopedia of Complexity and Systems Science.

[16]  Geerat J. Vermeij,et al.  Nature: An Economic History , 2004 .

[17]  R. Aunger A rigorous periodization of 'big' history , 2007 .

[18]  E. Chaisson Long-Term Global Heating From Energy Usage , 2008 .

[19]  Ursula K. Le Guin,et al.  Fire and Stone , 1989 .

[20]  R. McCourt,et al.  Green algae and the origin of land plants. , 2004, American journal of botany.

[21]  J. Randerson,et al.  Primary production of the biosphere: integrating terrestrial and oceanic components , 1998, Science.

[22]  J. Benemann,et al.  Solar energy conversion by nitrogen-limited cultures of Anabaena cylindrica. , 1979 .

[23]  R E Ulanowicz,et al.  Mass and energy flow in closed ecosystems. , 1972, Journal of theoretical biology.

[24]  D. Vanbeveren,et al.  Massive stars , 1998 .

[25]  E. Chaisson Cosmic Evolution: The Rise of Complexity in Nature , 2001 .

[26]  A. J. Lotka Contribution to the Energetics of Evolution. , 1922, Proceedings of the National Academy of Sciences of the United States of America.

[27]  Eric J. Chaisson,et al.  Complexity: An energetics agenda , 2004, Complex..

[28]  R. Adams Energy and Structure: A Theory of Social Power , 1975 .

[29]  G. Srinivasan Maps of Time , 2012 .

[30]  The cosmic environment for the growth of complexity. , 1998, Bio Systems.

[31]  J. Kaler The Cambridge Encyclopedia of Stars , 2006 .

[32]  F. Spier Big History and the Future of Humanity , 2010 .

[33]  G. Subbarao,et al.  Crop Radiation Use Efficiency and Photosynthate Formation—Avenues for Genetic Improvement , 2005 .

[34]  F. Spier I. UNIVERSAL EVOLUTION 1 How Big History Works: Energy Flows and the Rise and Demise of Complexity * , 2005 .

[35]  Mayr,et al.  This is Biology , 1998 .

[36]  S. Long,et al.  What is the maximum efficiency with which photosynthesis can convert solar energy into biomass? , 2008, Current opinion in biotechnology.

[37]  C. Chyba,et al.  The early faint sun paradox: organic shielding of ultraviolet-labile greenhouse gases , 1997, Science.

[38]  Paul G. Falkowski,et al.  The Evolution of Modern Eukaryotic Phytoplankton , 2004, Science.