A Novel Scheme for Liouville’s Equation with a Discontinuous Hamiltonian and Applications to Geometrical Optics
暂无分享,去创建一个
J. H. M. ten Thije Boonkkamp | Wilbert L. IJzerman | J. H. M. Thije Boonkkamp | Teus W. Tukker | Bart S. van Lith | W. IJzerman | J. T. T. Boonkkamp | T. Tukker | B. S. Lith
[1] J. M. Sanz-Serna,et al. Runge-kutta schemes for Hamiltonian systems , 1988 .
[2] Fernando Reitich,et al. An accurate spectral/discontinuous finite-element formulation of a phase-space-based level set approach to geometrical optics , 2005 .
[3] Benjamin Sanderse,et al. Energy-conserving Runge-Kutta methods for the incompressible Navier-Stokes equations , 2013, J. Comput. Phys..
[4] C. Beaug'e,et al. Giga-year evolution of Jupiter Trojans and the asymmetry problem , 2014, 1604.05331.
[5] F. James,et al. One-dimensional transport equations with discontinuous coefficients , 1998 .
[6] D. Malacara-Hernández,et al. PRINCIPLES OF OPTICS , 2011 .
[7] A. Harten. High Resolution Schemes for Hyperbolic Conservation Laws , 2017 .
[8] S. Osher,et al. Uniformly High-Order Accurate Nonoscillatory Schemes. I , 1987 .
[9] W. D. Evans,et al. PARTIAL DIFFERENTIAL EQUATIONS , 1941 .
[10] Alois Herkommer,et al. Phase space optics: an alternate approach to freeform optical systems , 2013 .
[11] P. Michel,et al. Numerical predictions of surface effects during the 2029 close approach of Asteroid 99942 Apophis , 2014, 1408.0168.
[12] A. Herkommer,et al. Phase space transformations – a different way to understand freeform optical systems , 2013 .
[13] I. Newton. Philosophiæ naturalis principia mathematica , 1973 .
[14] J A Sethian,et al. A fast marching level set method for monotonically advancing fronts. , 1996, Proceedings of the National Academy of Sciences of the United States of America.
[15] Swen Kortig. Transactions of the Royal Irish Academy , 1892 .
[16] Christian Klingenberg,et al. Convex conservation laws with discontinuous coefficients. existence, uniqueness and asymptotic behavior , 1995 .
[17] J. Greenberg,et al. A well-balanced scheme for the numerical processing of source terms in hyperbolic equations , 1996 .
[18] Kurt Bernardo Wolf,et al. Geometric Optics on Phase Space , 2004 .
[19] K. Wolf,et al. Canonical transformations to warped surfaces: Correction of aberrated optical images , 1997 .
[20] H. Qin,et al. Analytical methods for describing charged particle dynamics in general focusing lattices using generalized Courant-Snyder theory , 2014, 1504.04314.
[21] R. Mattheij,et al. Partial Differential Equations: Modeling, Analysis, Computation (Siam Monographs on Mathematical Modeling and Computation) (Saim Models on Mathematical Modeling and Computation) , 2005 .
[22] John M. Finn,et al. Lie Series and Invariant Functions for Analytic Symplectic Maps , 1976 .
[23] John D. Towers. Convergence of a Difference Scheme for Conservation Laws with a Discontinuous Flux , 2000, SIAM J. Numer. Anal..
[24] Chi-Wang Shu,et al. Total variation diminishing Runge-Kutta schemes , 1998, Math. Comput..
[25] G. M.,et al. Partial Differential Equations I , 2023, Applied Mathematical Sciences.
[26] Aslak Tveito,et al. The Solution of Nonstrictly Hyperbolic Conservation Laws May Be Hard to Compute , 1995, SIAM J. Sci. Comput..
[27] W. Hamilton. XV. On a general method in dynamics; by which the study of the motions of all free systems of attracting or repelling points is reduced to the search and differentiation of one central relation, or characteristic function , 1834, Philosophical Transactions of the Royal Society of London.
[28] C. Cercignani. The Boltzmann equation and its applications , 1988 .
[29] Chi-Wang Shu,et al. Strong Stability-Preserving High-Order Time Discretization Methods , 2001, SIAM Rev..
[30] R. Rebarber. Exponential Stability of Coupled Beams with Dissipative Joints: A Frequency Domain Approach , 1995 .
[31] Shi Jin,et al. A Hamiltonian-Preserving Scheme for the Liouville Equation of Geometrical Optics with Partial Transmissions and Reflections , 2006, SIAM J. Numer. Anal..
[32] Roshdi Rashed,et al. A Pioneer in Anaclastics: Ibn Sahl on Burning Mirrors and Lenses , 1990, Isis.
[33] R.M.M. Mattheij,et al. Partial Differential Equations: Modeling, Analysis, Computation (Siam Monographs on Mathematical Modeling and Computation) (Saim Models on Mathematical Modeling and Computation) , 2005 .
[34] Wen Lea Pearn,et al. (Journal of Computational and Applied Mathematics,228(1):274-278)Optimization of the T Policy M/G/1 Queue with Server Breakdowns and General Startup Times , 2009 .
[35] B. Perthame,et al. A kinetic scheme for the Saint-Venant system¶with a source term , 2001 .
[36] Athar Yawar,et al. Icarus , 2017, The Lancet.
[37] V. Arnold. Mathematical Methods of Classical Mechanics , 1974 .
[38] L. Evans,et al. Partial Differential Equations , 1941 .
[39] Geng Sun,et al. Efficient symplectic Runge-Kutta methods , 2006, Appl. Math. Comput..
[40] S. Osher,et al. Weighted essentially non-oscillatory schemes , 1994 .
[41] David Rubin,et al. Introduction to Continuum Mechanics , 2009 .
[42] H. Yoshida. Construction of higher order symplectic integrators , 1990 .
[43] B. M. Fulk. MATH , 1992 .
[44] J. Liouville,et al. Note sur la Théorie de la Variation des constantes arbitraires. , 1838 .
[45] P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .
[46] Maxime Hauray,et al. On Liouville transport equation with a force field in $BV_{loc}$ , 2013, 1310.0976.
[47] A. Dragt. Lie algebraic theory of geometrical optics and optical aberrations , 1982 .
[48] K. Wolf,et al. Factorization of the phase-space transformation produced by an arbitrary refracting surface , 1986 .
[49] Shi Jin,et al. Hamiltonian-preserving schemes for the Liouville equation of geometrical optics with discontinuous local wave speeds , 2006, J. Comput. Phys..
[50] S. W. Hamilton. On a General Method in Dynamics , 2018 .
[51] Journal de Mathématiques pures et appliquées , 1892 .
[52] W. Heitler. The Principles of Quantum Mechanics , 1947, Nature.
[53] Shingyu Leung,et al. A level set based Eulerian method for paraxial multivalued traveltimes , 2004 .
[54] Lorenzo Pareschi,et al. Implicit-explicit runge-kutta schemes and applications to hyperbolic systems with relaxation , 2010, 1009.2757.
[55] W. D. Wightman. Philosophical Transactions of the Royal Society , 1961, Nature.
[56] Jianliang Qian,et al. A Local Level Set Method for Paraxial Geometrical Optics , 2006, SIAM J. Sci. Comput..
[57] Jean-David Benamou,et al. An Introduction to Eulerian Geometrical Optics (1992–2002) , 2003, J. Sci. Comput..
[58] Étienne Forest,et al. Geometric integration for particle accelerators , 2006 .
[59] Ke Chen,et al. Applied Mathematics and Computation , 2022 .
[60] B. Engquist,et al. Multi-phase computations in geometrical optics , 1996 .
[61] Frank Zimmermann,et al. Announcement: New Sponsors forPhysical Review Special Topics - Accelerators and Beams , 2008 .
[62] Andrew S. Glassner,et al. An introduction to ray tracing , 1989 .