A Novel Scheme for Liouville’s Equation with a Discontinuous Hamiltonian and Applications to Geometrical Optics

A novel scheme is developed that computes numerical solutions of Liouville’s equation with a discontinuous Hamiltonian. It is assumed that the underlying Hamiltonian system has well-defined behaviour even when the Hamiltonian is discontinuous. In the case of geometrical optics such a discontinuity yields the familiar Snell’s law or the law of specular reflection. Solutions to Liouville’s equation should be constant along curves defined by the Hamiltonian system when the right-hand side is zero, i.e., no absorption or collisions. This consideration allows us to derive a new jump condition, enabling us to construct a first-order accurate scheme. Essentially, the correct physics is built into the solver. The scheme is tested in a two-dimensional optical setting with two test cases, the first using a single jump in the refractive index and the second a compound parabolic concentrator. For these two situations, the scheme outperforms the more conventional method of Monte Carlo ray tracing.

[1]  J. M. Sanz-Serna,et al.  Runge-kutta schemes for Hamiltonian systems , 1988 .

[2]  Fernando Reitich,et al.  An accurate spectral/discontinuous finite-element formulation of a phase-space-based level set approach to geometrical optics , 2005 .

[3]  Benjamin Sanderse,et al.  Energy-conserving Runge-Kutta methods for the incompressible Navier-Stokes equations , 2013, J. Comput. Phys..

[4]  C. Beaug'e,et al.  Giga-year evolution of Jupiter Trojans and the asymmetry problem , 2014, 1604.05331.

[5]  F. James,et al.  One-dimensional transport equations with discontinuous coefficients , 1998 .

[6]  D. Malacara-Hernández,et al.  PRINCIPLES OF OPTICS , 2011 .

[7]  A. Harten High Resolution Schemes for Hyperbolic Conservation Laws , 2017 .

[8]  S. Osher,et al.  Uniformly High-Order Accurate Nonoscillatory Schemes. I , 1987 .

[9]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[10]  Alois Herkommer,et al.  Phase space optics: an alternate approach to freeform optical systems , 2013 .

[11]  P. Michel,et al.  Numerical predictions of surface effects during the 2029 close approach of Asteroid 99942 Apophis , 2014, 1408.0168.

[12]  A. Herkommer,et al.  Phase space transformations – a different way to understand freeform optical systems , 2013 .

[13]  I. Newton Philosophiæ naturalis principia mathematica , 1973 .

[14]  J A Sethian,et al.  A fast marching level set method for monotonically advancing fronts. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[15]  Swen Kortig Transactions of the Royal Irish Academy , 1892 .

[16]  Christian Klingenberg,et al.  Convex conservation laws with discontinuous coefficients. existence, uniqueness and asymptotic behavior , 1995 .

[17]  J. Greenberg,et al.  A well-balanced scheme for the numerical processing of source terms in hyperbolic equations , 1996 .

[18]  Kurt Bernardo Wolf,et al.  Geometric Optics on Phase Space , 2004 .

[19]  K. Wolf,et al.  Canonical transformations to warped surfaces: Correction of aberrated optical images , 1997 .

[20]  H. Qin,et al.  Analytical methods for describing charged particle dynamics in general focusing lattices using generalized Courant-Snyder theory , 2014, 1504.04314.

[21]  R. Mattheij,et al.  Partial Differential Equations: Modeling, Analysis, Computation (Siam Monographs on Mathematical Modeling and Computation) (Saim Models on Mathematical Modeling and Computation) , 2005 .

[22]  John M. Finn,et al.  Lie Series and Invariant Functions for Analytic Symplectic Maps , 1976 .

[23]  John D. Towers Convergence of a Difference Scheme for Conservation Laws with a Discontinuous Flux , 2000, SIAM J. Numer. Anal..

[24]  Chi-Wang Shu,et al.  Total variation diminishing Runge-Kutta schemes , 1998, Math. Comput..

[25]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[26]  Aslak Tveito,et al.  The Solution of Nonstrictly Hyperbolic Conservation Laws May Be Hard to Compute , 1995, SIAM J. Sci. Comput..

[27]  W. Hamilton XV. On a general method in dynamics; by which the study of the motions of all free systems of attracting or repelling points is reduced to the search and differentiation of one central relation, or characteristic function , 1834, Philosophical Transactions of the Royal Society of London.

[28]  C. Cercignani The Boltzmann equation and its applications , 1988 .

[29]  Chi-Wang Shu,et al.  Strong Stability-Preserving High-Order Time Discretization Methods , 2001, SIAM Rev..

[30]  R. Rebarber Exponential Stability of Coupled Beams with Dissipative Joints: A Frequency Domain Approach , 1995 .

[31]  Shi Jin,et al.  A Hamiltonian-Preserving Scheme for the Liouville Equation of Geometrical Optics with Partial Transmissions and Reflections , 2006, SIAM J. Numer. Anal..

[32]  Roshdi Rashed,et al.  A Pioneer in Anaclastics: Ibn Sahl on Burning Mirrors and Lenses , 1990, Isis.

[33]  R.M.M. Mattheij,et al.  Partial Differential Equations: Modeling, Analysis, Computation (Siam Monographs on Mathematical Modeling and Computation) (Saim Models on Mathematical Modeling and Computation) , 2005 .

[34]  Wen Lea Pearn,et al.  (Journal of Computational and Applied Mathematics,228(1):274-278)Optimization of the T Policy M/G/1 Queue with Server Breakdowns and General Startup Times , 2009 .

[35]  B. Perthame,et al.  A kinetic scheme for the Saint-Venant system¶with a source term , 2001 .

[36]  Athar Yawar,et al.  Icarus , 2017, The Lancet.

[37]  V. Arnold Mathematical Methods of Classical Mechanics , 1974 .

[38]  L. Evans,et al.  Partial Differential Equations , 1941 .

[39]  Geng Sun,et al.  Efficient symplectic Runge-Kutta methods , 2006, Appl. Math. Comput..

[40]  S. Osher,et al.  Weighted essentially non-oscillatory schemes , 1994 .

[41]  David Rubin,et al.  Introduction to Continuum Mechanics , 2009 .

[42]  H. Yoshida Construction of higher order symplectic integrators , 1990 .

[43]  B. M. Fulk MATH , 1992 .

[44]  J. Liouville,et al.  Note sur la Théorie de la Variation des constantes arbitraires. , 1838 .

[45]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[46]  Maxime Hauray,et al.  On Liouville transport equation with a force field in $BV_{loc}$ , 2013, 1310.0976.

[47]  A. Dragt Lie algebraic theory of geometrical optics and optical aberrations , 1982 .

[48]  K. Wolf,et al.  Factorization of the phase-space transformation produced by an arbitrary refracting surface , 1986 .

[49]  Shi Jin,et al.  Hamiltonian-preserving schemes for the Liouville equation of geometrical optics with discontinuous local wave speeds , 2006, J. Comput. Phys..

[50]  S. W. Hamilton On a General Method in Dynamics , 2018 .

[51]  Journal de Mathématiques pures et appliquées , 1892 .

[52]  W. Heitler The Principles of Quantum Mechanics , 1947, Nature.

[53]  Shingyu Leung,et al.  A level set based Eulerian method for paraxial multivalued traveltimes , 2004 .

[54]  Lorenzo Pareschi,et al.  Implicit-explicit runge-kutta schemes and applications to hyperbolic systems with relaxation , 2010, 1009.2757.

[55]  W. D. Wightman Philosophical Transactions of the Royal Society , 1961, Nature.

[56]  Jianliang Qian,et al.  A Local Level Set Method for Paraxial Geometrical Optics , 2006, SIAM J. Sci. Comput..

[57]  Jean-David Benamou,et al.  An Introduction to Eulerian Geometrical Optics (1992–2002) , 2003, J. Sci. Comput..

[58]  Étienne Forest,et al.  Geometric integration for particle accelerators , 2006 .

[59]  Ke Chen,et al.  Applied Mathematics and Computation , 2022 .

[60]  B. Engquist,et al.  Multi-phase computations in geometrical optics , 1996 .

[61]  Frank Zimmermann,et al.  Announcement: New Sponsors forPhysical Review Special Topics - Accelerators and Beams , 2008 .

[62]  Andrew S. Glassner,et al.  An introduction to ray tracing , 1989 .