Sparse graphs: Metrics and random models

Recently, Bollobas, Janson and Riordan introduced a family of random graph models producing inhomogeneous graphs with n vertices and Θ(n) edges whose distribution is characterized by a kernel, i.e., a symmetric measurable function κ: [0, 1]2 → [0, ∞). To understand these models, we should like to know when different kernels κ give rise to “similar” graphs, and, given a real-world network, how “similar” is it to a typical graph G(n, κ) derived from a given kernel κ. The analogous questions for dense graphs, with Θ(n2) edges, are answered by recent results of Borgs, Chayes, Lovasz, Sos, Szegedy and Vesztergombi, who showed that several natural metrics on graphs are equivalent, and moreover that any sequence of graphs converges in each metric to a graphon, i.e., a kernel taking values in [0, 1]. Possible generalizations of these results to graphs with o(n2) but ω(n) edges are discussed in a companion article [Bollobas and Riordan, London Math Soc Lecture Note Series 365 (2009), 211–287]; here we focus only on graphs with Θ(n) edges, which turn out to be much harder to handle. Many new phenomena occur, and there are a host of plausible metrics to consider; many of these metrics suggest new random graph models and vice versa. © 2010 Wiley Periodicals, Inc. Random Struct. Alg., 39, 1-38, 2011 © 2011 Wiley Periodicals, Inc.

[1]  Colin McDiarmid,et al.  Bisecting sparse random graphs , 2001 .

[2]  P. Erdos,et al.  On the evolution of random graphs , 1984 .

[3]  Russell Lyons Asymptotic Enumeration of Spanning Trees , 2005, Comb. Probab. Comput..

[4]  B. Sudakov,et al.  Pseudo-random Graphs , 2005, math/0503745.

[5]  B. Bollobás,et al.  Metrics for sparse graphs , 2007, 0708.1919.

[6]  Béla Bollobás,et al.  The Cut Metric, Random Graphs, and Branching Processes , 2009, 0901.2091.

[7]  David Gamarnik,et al.  Random MAX SAT, random MAX CUT, and their phase transitions , 2003 .

[8]  G. R. Blakley,et al.  A Hölder type inequality for symmetric matrices with nonnegative entries , 1965 .

[9]  M. Sipser,et al.  Maximum matching in sparse random graphs , 1981, 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981).

[10]  V. Sós,et al.  Counting Graph Homomorphisms , 2006 .

[11]  Marek Karpinski,et al.  Improved approximation of Max-Cut on graphs of bounded degree , 2002, J. Algorithms.

[12]  László Lovász,et al.  Limits of dense graph sequences , 2004, J. Comb. Theory B.

[13]  V. Sós,et al.  Convergent Sequences of Dense Graphs II. Multiway Cuts and Statistical Physics , 2012 .

[14]  Imre Leader,et al.  A Conjecture Concerning a Limit of Non-Cayley Graphs , 2001 .

[15]  M E J Newman,et al.  Random graphs with clustering. , 2009, Physical review letters.

[16]  B. Bollobás The evolution of random graphs , 1984 .

[17]  B. Bollobás,et al.  The phase transition in inhomogeneous random graphs , 2007 .

[18]  Alexandr V. Kostochka,et al.  On a lower bound for the isoperimetric number of cubic graphs , 1993 .

[19]  G. Elek,et al.  Sofic groups and direct finiteness , 2003 .

[20]  Maria J. Serna,et al.  Bounds on the bisection width for random d -regular graphs , 2007, Theor. Comput. Sci..

[21]  Fan Chung Graham,et al.  Quasi-random graphs , 1988, Comb..

[22]  E. Szemerédi Regular Partitions of Graphs , 1975 .

[23]  Yoshiharu Kohayakawa,et al.  Szemerédi’s Regularity Lemma and Quasi-randomness , 2003 .

[24]  Maria Axenovich,et al.  On the editing distance of graphs , 2008 .

[25]  László Lovász,et al.  Generalized quasirandom graphs , 2008, J. Comb. Theory, Ser. B.

[26]  Ravi B. Boppana,et al.  Eigenvalues and graph bisection: An average-case analysis , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).

[27]  Misha Gromov,et al.  Endomorphisms of symbolic algebraic varieties , 1999 .

[28]  O. Cohen Recurrence of Distributional Limits of Finite Planar Graphs , 2000 .

[29]  Stefanie Gerke,et al.  The sparse regularity lemma and its applications , 2005, BCC.

[30]  Benjamin Weiss,et al.  SOFIC GROUPS AND DYNAMICAL SYSTEMS , 2000 .

[31]  Y. Kohayakawa Szemerédi's regularity lemma for sparse graphs , 1997 .

[32]  Gábor Elek On the limit of large girth graph sequences , 2010, Comb..

[33]  A. Coja-Oghlan A spectral heuristic for bisecting random graphs , 2006 .

[34]  Richard M. Karp,et al.  Maximum Matchings in Sparse Random Graphs , 1981, FOCS 1981.

[35]  Béla Bollobás,et al.  Random Graphs , 1985 .

[36]  Fan Chung Graham,et al.  Sparse Quasi-Random Graphs , 2002, Comb..

[37]  A. Rbnyi ON THE EVOLUTION OF RANDOM GRAPHS , 2001 .

[38]  Alan M. Frieze,et al.  Quick Approximation to Matrices and Applications , 1999, Comb..

[39]  V. Sós,et al.  Convergent Sequences of Dense Graphs I: Subgraph Frequencies, Metric Properties and Testing , 2007, math/0702004.

[40]  S. Janson Rounding of continuous random variables and oscillatory asymptotics , 2005, math/0509009.

[41]  'Ad'am Tim'ar Percolation on nonunimodular transitive graphs , 2006 .

[42]  László Lovász,et al.  Graph limits and parameter testing , 2006, STOC '06.

[43]  Stefan Friedrich,et al.  Topology , 2019, Arch. Formal Proofs.

[44]  I. Elldős ON SOME NEW INEQUALITIES CONCERNING EXTREMAL PROPERTIES OF GRAPHS by , 2004 .

[45]  Béla Bollobás,et al.  Sparse random graphs with clustering , 2008, Random Struct. Algorithms.

[46]  Béla Bollobás,et al.  Random Graphs: Notation , 2001 .

[47]  Russell Lyons,et al.  Group-invariant Percolation on Graphs , 1999 .

[48]  J. Michael Steele,et al.  The Objective Method: Probabilistic Combinatorial Optimization and Local Weak Convergence , 2004 .

[49]  Paola Campadelli,et al.  An Upper Bound for the Maximum Cut Mean Value , 1997, WG.

[50]  D. Aldous,et al.  Processes on Unimodular Random Networks , 2006, math/0603062.

[51]  Béla Bollobás,et al.  The Isoperimetric Number of Random Regular Graphs , 1988, Eur. J. Comb..

[52]  Vladimir Pestov,et al.  Hyperlinear and Sofic Groups: A Brief Guide , 2008, Bulletin of Symbolic Logic.

[53]  Béla Bollobás,et al.  Max Cut for Random Graphs with a Planted Partition , 2004, Combinatorics, Probability and Computing.

[54]  D. Gamarnik,et al.  Maximum weight independent sets and matchings in sparse random graphs. Exact results using the local weak convergence method , 2006 .