A WCDMA Multiband Power Amplifier Module With Si-CMOS/GaAs-HBT Hybrid Power-Stage Configuration

This paper describes a newly developed Si/GaAs hybrid multiband power amplifier module (MB-PAM) that supports major quad wideband code division multiple access (WCDMA) bands (Bands 5, 8, 2, and 1) for handset applications. With four dies (two GaAs-HBT dies, one GaAs-HEMT die, and one CMOS die) and several surface-mount devices, the hybrid MB-PAM accommodates two amplifier chains and two single-pole double-throw HEMT band-select switches on a 5 mm × 5.5 mm laminate, covering 824-915 and 1850-1980 MHz. Each amplifier chain has two switchable signal paths corresponding to dual (high and low) power modes [high-power mode (HPM) and low-power mode (LPM)] for saving battery current in practical handset use. One of the main features of this MB-PAM is the integration of driver stages, RF switches, and their bias control circuits on the CMOS die for pursuing cost reduction. Only the two output power stages are fabricated in a GaA-HBT process. Measurements conducted under the condition of a 3.4-V supply voltage and a WCDMA (Third Generation Partnership Project Release 99) modulated signal are as follows. Owing to optimized linear design and broadband output matching design, the hybrid MB-PAM achieves a power-added efficiency (PAE) as high as 39%-40% at 28 dBm of output power (Pout) over 824-915 MHz in the HPM while maintaining a ±5-MHz-offset adjacent channel leakage power ratio (ACLR1) to less than -39 dBc. In the LPM, PAE of 15% at a Pout of 17 dBm is obtained while ACLR1 of less than -40 dBc is maintained. For 1850-1980 MHz, the MB-PAM delivers 35% of PAE with ACLR1 of less than -40 dBc at 28 dBm of Pout in the HPM and 15% PAE at 17.5 dBm of Pout in the LPM.

[1]  Ki Seok Yang,et al.  An EDGE/GSM Quad-Band CMOS Power Amplifier , 2014, IEEE Journal of Solid-State Circuits.

[2]  Songcheol Hong,et al.  A Dual-Power-Mode Output Matching Network for Digitally Modulated CMOS Power Amplifier , 2013, IEEE Transactions on Microwave Theory and Techniques.

[3]  Masahiro Muraguchi,et al.  Quasi-linear amplification using self-phase distortion compensation technique , 1995 .

[4]  K. Maemura,et al.  A CDMA InGaP/GaAs-HBT MMIC Power Amplifier Module Operating With a Low Reference Voltage of 2.4 V , 2007, IEEE Journal of Solid-State Circuits.

[5]  Jau-Horng Chen,et al.  A 1.2-V 90-nm Fully Integrated Compact CMOS Linear Power Amplifier Using the Coupled L-Shape Concentric Vortical Transformer , 2014, IEEE Transactions on Microwave Theory and Techniques.

[6]  Nick Cheng,et al.  Challenges and Requirements of Multimode Multiband Power Amplifiers for Mobile Applications , 2011, 2011 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS).

[7]  L. E. Larson,et al.  Monolithic Power-Combining Techniques for Watt-Level 2.4-GHz CMOS Power Amplifiers for WLAN Applications , 2013, IEEE Transactions on Microwave Theory and Techniques.

[8]  Nakamoto Hiroyuki,et al.  A Fully Integrated Triple-Band CMOS Power Amplifier for WCDMA Mobile Handsets , 2012 .

[9]  Tanaka,et al.  A Linearization Technique For CMOS RF Power Amplifiers , 1997, Symposium on VLSI Circuits.

[10]  Krzysztof Iniewski,et al.  Circuits at the Nanoscale: Communications, Imaging, and Sensing , 2008 .

[11]  Osamu Watanabe,et al.  A 1.9 GHz CMOS Power Amplifier With Embedded Linearizer to Compensate AM-PM Distortion , 2012, IEEE Journal of Solid-State Circuits.

[12]  Bonkee Kim,et al.  A low-power highly linear cascoded multiple-gated transistor CMOS RF amplifier with 10 dB IP3 improvement (Revised) , 2003, IEEE Microwave and Wireless Components Letters.

[13]  Osamu Watanabe,et al.  A 1.9/2.4GHz dual band CMOS power amplifier with integrated AM-PM distortion canceller , 2011, 2011 IEEE Custom Integrated Circuits Conference (CICC).

[14]  T. Apel,et al.  Efficient three-state WCDMA PA integrated with high-performance BiHEMT HBT / E-D pHEMT process , 2008, 2008 IEEE Radio Frequency Integrated Circuits Symposium.

[15]  Youngwoo Kwon,et al.  Broadband CMOS Stacked RF Power Amplifier Using Reconfigurable Interstage Network for Wideband Envelope Tracking , 2015, IEEE Transactions on Microwave Theory and Techniques.

[16]  Nick Cheng,et al.  Multimode multiband power amplifier optimization for mobile applications , 2013, 2013 International Symposium onVLSI Design, Automation, and Test (VLSI-DAT).

[17]  A. Inoue,et al.  A 2.5-V Low-Reference-Voltage 2.8-V Low- Collector–Voltage Operation 0.8–0.9-GHz Broadband CDMA BiFET Power Amplifier With an Input SPDT Band Select Switch , 2011, IEEE Transactions on Microwave Theory and Techniques.

[18]  Youngwoo Kwon,et al.  Dynamic Stack-Controlled CMOS RF Power Amplifier for Wideband Envelope Tracking , 2014, IEEE Transactions on Microwave Theory and Techniques.

[19]  Jenshan Lin,et al.  A novel linearizer and a fully integrated CMOS power amplifier , 2006, 2006 Asia-Pacific Microwave Conference.

[20]  Bumman Kim,et al.  Control of IMD Asymmetry of CMOS Power Amplifier for Broadband Operation Using Wideband Signal , 2013, IEEE Transactions on Microwave Theory and Techniques.

[21]  Youngwoo Kwon,et al.  A single-chain multiband reconfigurable linear power amplifier in SOI CMOS , 2015, 2015 IEEE MTT-S International Microwave Symposium.

[22]  Kihyun Kim,et al.  A fully integrated CMOS linear power amplifier using an IMD-reduced bias network , 2014, 2014 9th European Microwave Integrated Circuit Conference.

[23]  G. Hau,et al.  A WCDMA 41% power efficiency direct DC coupled hybrid CMOS/GaAs power amplifier with pre-distortion linearization , 2012, 2012 IEEE Radio Frequency Integrated Circuits Symposium.

[24]  Kouichi Kanda,et al.  A fully integrated triple-band CMOS power amplifier for WCDMA mobile handsets , 2012, 2012 IEEE International Solid-State Circuits Conference.

[25]  Takashi Yamaguchi,et al.  A 28.3 mW PA-Closed Loop for Linearity and Efficiency Improvement Integrated in a $+$ 27.1 dBm WCDMA CMOS Power Amplifier , 2012, IEEE Journal of Solid-State Circuits.

[26]  B. Kim,et al.  Highly linear CMOS RF MMIC amplifier using multiple gated transistors and its Volterra series analysis , 2001, 2001 IEEE MTT-S International Microwave Sympsoium Digest (Cat. No.01CH37157).

[27]  Liang-Hung Lu,et al.  A 5.2-GHz CMOS T/R Switch for Ultra-Low-Voltage Operations , 2008, IEEE Transactions on Microwave Theory and Techniques.

[28]  Songcheol Hong,et al.  A fully integrated dual-mode CMOS power amplifier for WCDMA applications , 2012, 2012 IEEE International Solid-State Circuits Conference.

[29]  Chang-Ho Lee,et al.  A linearity improvement technique for a class-AB CMOS Power Amplifier with a direct feedback path , 2010, 2010 IEEE Asian Solid-State Circuits Conference.

[30]  Sangsu Jin,et al.  A 34% PAE, 26-dBm output power envelope-tracking CMOS power amplifier for 10-MHz BW LTE applications , 2012, 2012 IEEE/MTT-S International Microwave Symposium Digest.

[31]  C. Nguyen,et al.  Ultra-Compact High-Linearity High-Power Fully Integrated DC–20-GHz 0.18-$\mu{\hbox {m}}$ CMOS T/R Switch , 2007, IEEE Transactions on Microwave Theory and Techniques.

[32]  Dongsu Kim,et al.  Envelope-Tracking CMOS Power Amplifier Module for LTE Applications , 2013, IEEE Transactions on Microwave Theory and Techniques.

[33]  Bumman Kim,et al.  Development of a highly efficient and linear differential CMOS power amplifier with harmonic control , 2013, 2013 Asia-Pacific Microwave Conference Proceedings (APMC).

[34]  Chao Lu,et al.  Linearization of CMOS Broadband Power Amplifiers Through Combined Multigated Transistors and Capacitance Compensation , 2007, IEEE Transactions on Microwave Theory and Techniques.

[35]  Renato Negra,et al.  2.6 Class-0: A highly linear class of power amplifiers in 0.13μm CMOS for WCDMA/LTE applications , 2015, 2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers.

[36]  K. Fujii,et al.  A multiband power amplifier using combination of CMOS and GaAs technologies for WCDMA handsets , 2014, 2014 IEEE Radio Frequency Integrated Circuits Symposium.

[37]  Yun Seong Eo,et al.  A Highly Linear CMOS Power Amplifier with AM-AM and AM-PM Compensation for 2.3GHz Wibro/WiMax Applications , 2007, 2007 Asia-Pacific Microwave Conference.

[38]  Krzysztof Iniewski Nano-Semiconductors , 2011 .

[39]  Eiji Yoshida,et al.  A 1.95 GHz Fully Integrated Envelope Elimination and Restoration CMOS Power Amplifier Using Timing Alignment Technique for WCDMA and LTE , 2014, IEEE Journal of Solid-State Circuits.

[40]  Chul Soon Park,et al.  A triple-band CMOS class-E power amplifier for WCDMA/LTE applications , 2013, 2013 Asia-Pacific Microwave Conference Proceedings (APMC).

[41]  Qiang Li,et al.  16.6- and 28-GHz Fully Integrated CMOS RF Switches With Improved Body Floating , 2008, IEEE Transactions on Microwave Theory and Techniques.

[42]  Ali Hajimiri,et al.  A Fully-Integrated Quad-Band GSM/GPRS CMOS Power Amplifier , 2008, IEEE Journal of Solid-State Circuits.

[43]  Jan-Erik Mueller,et al.  A 1.8GHz wide-band stacked-cascode CMOS power amplifier for WCDMA applications in 65nm standard CMOS , 2011, 2011 IEEE Radio Frequency Integrated Circuits Symposium.

[44]  P. Heydari,et al.  A novel linearization technique for linear/pseudo-linear RF CMOS power amplifiers , 2004, 2004 IEE Radio Frequency Integrated Circuits (RFIC) Systems. Digest of Papers.

[45]  Gary Hau,et al.  Multi-mode WCDMA power amplifier module with improved low-power efficiency using stage-bypass , 2010, 2010 IEEE Radio Frequency Integrated Circuits Symposium.

[46]  Charles G Sodini Circuits at the Nanoscale , 2016 .

[47]  P. Reynaert,et al.  A Fully Integrated Watt-Level Linear 900-MHz CMOS RF Power Amplifier for LTE-Applications , 2012, IEEE Transactions on Microwave Theory and Techniques.

[48]  Chien-Chang Huang,et al.  A Compact High-Efficiency CMOS Power Amplifier With Built-in Linearizer , 2009, IEEE Microwave and Wireless Components Letters.

[49]  Youngoo Yang,et al.  Highly linear 0.18-μm CMOS power amplifier with deep n-Well structure , 2006, IEEE J. Solid State Circuits.

[50]  Krzysztof Iniewski CMOS Nanoelectronics: Analog and RF VLSI Circuits , 2011 .

[51]  José Silva-Martínez,et al.  A 44.9% PAE digitally-assisted linear power amplifier in 40 nm CMOS , 2014, 2014 IEEE Asian Solid-State Circuits Conference (A-SSCC).

[52]  Kwyro Lee,et al.  A new linearization technique for MOSFET RF amplifier using multiple gated transistors , 2000 .

[53]  A. Hussain,et al.  A 3×3mm2 LTE/WCDMA dual-mode power amplifier module with integrated high directivity coupler , 2011, 2011 IEEE Bipolar/BiCMOS Circuits and Technology Meeting.

[54]  Songcheol Hong,et al.  A dual-mode RF CMOS power amplifier with nonlinear capacitance compensation , 2013, 2013 Asia-Pacific Microwave Conference Proceedings (APMC).

[55]  K. Horiguchi,et al.  A two-power-mode Si-CMOS/GaAs-HBT hybrid power amplifier module for 0.9-GHz-band W-CDMA handsets applications , 2014, 2014 Asia-Pacific Microwave Conference.

[56]  N. Suematsu,et al.  21.5-dBm power-handling 5-GHz transmit/receive CMOS switch realized by voltage division effect of stacked transistor configuration with depletion-layer-extended transistors (DETs) , 2004, IEEE Journal of Solid-State Circuits.

[57]  Kirk Laursen,et al.  A high efficiency, compact size, single die tri-mode PAM for 3G/4G handset applications , 2011, 2011 41st European Microwave Conference.

[58]  Ockgoo Lee,et al.  A 40% PAE linear CMOS power amplifier with feedback bias technique for WCDMA applications , 2010, 2010 IEEE Radio Frequency Integrated Circuits Symposium.

[59]  Yan Li,et al.  A highly integrated multiband LTE SiGe power amplifier for envelope tracking , 2015, 2015 IEEE Radio Frequency Integrated Circuits Symposium (RFIC).

[60]  Songcheol Hong,et al.  A CMOS Power Amplifier With a Built-In RF Predistorter for Handset Applications , 2012, IEEE Transactions on Microwave Theory and Techniques.

[61]  J. Stevenson Kenney,et al.  A Triple-Mode Balanced Linear CMOS Power Amplifier Using a Switched-Quadrature Coupler , 2012, IEEE Journal of Solid-State Circuits.

[62]  Shintaro Shinjo,et al.  A triple-power-mode power amplifier using an Rx band noise reduction circuit for W-CDMA/LTE handsets , 2014, 2014 44th European Microwave Conference.

[63]  Bumman Kim,et al.  Linearization of CMOS Cascode Power Amplifiers Through Adaptive Bias Control , 2013, IEEE Transactions on Microwave Theory and Techniques.

[64]  Bumman Kim,et al.  Dynamic feedback and biasing for a linear CMOS power amplifier with envelope tracking , 2014, 2014 IEEE MTT-S International Microwave Symposium (IMS2014).

[65]  Yoosam Na,et al.  Integrated Bias Circuits of RF CMOS Cascode Power Amplifier for Linearity Enhancement , 2012, IEEE Transactions on Microwave Theory and Techniques.

[66]  Bumman Kim,et al.  Enhanced linearity of CMOS power amplifier using adaptive common gate bias control , 2013, 2013 IEEE MTT-S International Microwave Symposium Digest (MTT).

[67]  Dong Hun Shin,et al.  High-Linearity CMOS T/R Switch Design Above 20 GHz Using Asymmetrical Topology and AC-Floating Bias , 2009, IEEE Transactions on Microwave Theory and Techniques.

[68]  Lawrence E. Larson,et al.  An integrated 33.5dBm linear 2.4GHz power amplifier in 65nm CMOS for WLAN applications , 2010, IEEE Custom Integrated Circuits Conference 2010.

[69]  L.E. Larson,et al.  A capacitance-compensation technique for improved linearity in CMOS class-AB power amplifiers , 2004, IEEE Journal of Solid-State Circuits.