The expanding snoRNA world.

[1]  Martina Paulsen,et al.  Identification of tandemly-repeated C/D snoRNA genes at the imprinted human 14q32 domain reminiscent of those at the Prader-Willi/Angelman syndrome region. , 2002, Human molecular genetics.

[2]  Tamás Kiss,et al.  Cajal body‐specific small nuclear RNAs: a novel class of 2′‐O‐methylation and pseudouridylation guide RNAs , 2002, The EMBO journal.

[3]  A. Hüttenhofer,et al.  Identification of 86 candidates for small non-messenger RNAs from the archaeon Archaeoglobus fulgidus , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[4]  A. Hüttenhofer,et al.  RNomics in Archaea reveals a further link between splicing of archaeal introns and rRNA processing. , 2002, Nucleic acids research.

[5]  Elizabeth J. Tran,et al.  Archaeal ribosomal protein L7 is a functional homolog of the eukaryotic 15.5kD/Snu13p snoRNP core protein. , 2002, Nucleic acids research.

[6]  Hui Zhou,et al.  The Schizosaccharomyces pombe mgU6-47 gene is required for 2'-O-methylation of U6 snRNA at A41. , 2002, Nucleic acids research.

[7]  S. Eddy,et al.  Archaeal Guide RNAs Function in rRNA Modification in the Eukaryotic Nucleus , 2002, Current Biology.

[8]  S. Michaeli,et al.  The spliced leader-associated RNA is a trypanosome-specific sn(o) RNA that has the potential to guide pseudouridine formation on the SL RNA. , 2002, RNA.

[9]  F. Cecconi,et al.  Comparative Structure Analysis of Vertebrate U17 Small Nucleolar RNA (snoRNA) , 2002, Journal of Molecular Evolution.

[10]  A. Ferré-D’Amaré,et al.  Cocrystal Structure of a tRNA Ψ55 Pseudouridine Synthase Nucleotide Flipping by an RNA-Modifying Enzyme , 2001, Cell.

[11]  T. Lowe,et al.  Multiple snoRNA gene clusters from Arabidopsis. , 2001, RNA.

[12]  S. Eddy Non–coding RNA genes and the modern RNA world , 2001, Nature Reviews Genetics.

[13]  C Gaspin,et al.  Box C/D RNA guides for the ribose methylation of archaeal tRNAs. The tRNATrp intron guides the formation of two ribose-methylated nucleosides in the mature tRNATrp. , 2001, Nucleic acids research.

[14]  A. Hüttenhofer,et al.  The IC-SNURF-SNRPN transcript serves as a host for multiple small nucleolar RNA species and as an antisense RNA for UBE3A. , 2001, Human molecular genetics.

[15]  Wayne A. Decatur,et al.  A Well-Connected and Conserved Nucleoplasmic Helicase Is Required for Production of Box C/D and H/ACA snoRNAs and Localization of snoRNP Proteins , 2001, Molecular and Cellular Biology.

[16]  V. Ambros,et al.  An Extensive Class of Small RNAs in Caenorhabditis elegans , 2001, Science.

[17]  T. Tuschl,et al.  Identification of Novel Genes Coding for Small Expressed RNAs , 2001, Science.

[18]  L. Lim,et al.  An Abundant Class of Tiny RNAs with Probable Regulatory Roles in Caenorhabditis elegans , 2001, Science.

[19]  S. Michaeli,et al.  Identification of the First Trypanosome H/ACA RNA That Guides Pseudouridine Formation on rRNA* , 2001, The Journal of Biological Chemistry.

[20]  I. Bozzoni,et al.  U86, a novel snoRNA with an unprecedented gene organization in yeast. , 2001, Biochemical and biophysical research communications.

[21]  T. Vulliamy,et al.  The RNA component of telomerase is mutated in autosomal dominant dyskeratosis congenita , 2001, Nature.

[22]  J. Mattick,et al.  The evolution of controlled multitasked gene networks: the role of introns and other noncoding RNAs in the development of complex organisms. , 2001, Molecular biology and evolution.

[23]  C Gaspin,et al.  Identification of 66 box C/D snoRNAs in Arabidopsis thaliana: extensive gene duplications generated multiple isoforms predicting new ribosomal RNA 2'-O-methylation sites. , 2001, Journal of molecular biology.

[24]  T. Steitz,et al.  The kink‐turn: a new RNA secondary structure motif , 2001, The EMBO journal.

[25]  Tamás Kiss,et al.  Small nucleolar RNA‐guided post‐transcriptional modification of cellular RNAs , 2001, The EMBO journal.

[26]  A. Hüttenhofer,et al.  A Novel Brain-specific Box C/D Small Nucleolar RNA Processed from Tandemly Repeated Introns of a Noncoding RNA Gene in Rats* , 2001, The Journal of Biological Chemistry.

[27]  Anthony Henras,et al.  Accumulation of H/ACA snoRNPs depends on the integrity of the conserved central domain of the RNA-binding protein Nhp2p , 2001, Nucleic Acids Res..

[28]  J. Ofengand,et al.  A second function for pseudouridine synthases: A point mutant of RluD unable to form pseudouridines 1911, 1915, and 1917 in Escherichia coli 23S ribosomal RNA restores normal growth to an RluD-minus strain. , 2001, RNA.

[29]  A. Hüttenhofer,et al.  RNomics: an experimental approach that identifies 201 candidates for novel, small, non‐messenger RNAs in mouse , 2001, The EMBO journal.

[30]  T. Lowe,et al.  A guided tour: small RNA function in Archaea , 2001, Molecular microbiology.

[31]  S. Michaeli,et al.  Expression Studies on Clustered Trypanosomatid Box C/D Small Nucleolar RNAs* , 2001, The Journal of Biological Chemistry.

[32]  Meng Qing,et al.  Identification of 10 novel snoRNA gene clusters from Arabidopsis thaliana , 2001 .

[33]  J. Steitz,et al.  Internal Modification of U2 Small Nuclear (Snrna) Occurs in Nucleoli of Xenopus Oocytes , 2001, The Journal of cell biology.

[34]  J. Ni,et al.  Probing RNA in vivo with methylation guide small nucleolar RNAs. , 2001, Methods.

[35]  M. Meguro,et al.  Large-scale evaluation of imprinting status in the Prader-Willi syndrome region: an imprinted direct repeat cluster resembling small nucleolar RNA genes. , 2001, Human molecular genetics.

[36]  D. Lafontaine,et al.  Stable expression in yeast of the mature form of human telomerase RNA depends on its association with the box H/ACA small nucleolar RNP proteins Cbf5p, Nhp2p and Nop10p. , 2001, Nucleic acids research.

[37]  J. Steitz,et al.  Non-coding snoRNA host genes in Drosophila: expression strategies for modification guide snoRNAs. , 2001, European journal of cell biology.

[38]  A. Hüttenhofer,et al.  A translocation breakpoint cluster disrupts the newly defined 3' end of the SNURF-SNRPN transcription unit on chromosome 15. , 2001, Human molecular genetics.

[39]  T. Kiss,et al.  A small nucleolar guide RNA functions both in 2′‐O‐ribose methylation and pseudouridylation of the U5 spliceosomal RNA , 2001, The EMBO journal.

[40]  W. Filipowicz Imprinted expression of small nucleolar RNAs in brain: time for RNomics. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[41]  A. Hüttenhofer,et al.  Identification of brain-specific and imprinted small nucleolar RNA genes exhibiting an unusual genomic organization. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[42]  W. Filipowicz,et al.  Human H / ACA Small Nucleolar RNPs and Telomerase Share Evolutionarily Conserved Proteins NHP 2 and NOP 10 , 2000 .

[43]  K. Hartmuth,et al.  Crystal structure of the spliceosomal 15.5kD protein bound to a U4 snRNA fragment. , 2000, Molecular cell.

[44]  U. Francke,et al.  Small evolutionarily conserved RNA, resembling C/D box small nucleolar RNA, is transcribed from PWCR1, a novel imprinted gene in the Prader-Willi deletion region, which Is highly expressed in brain. , 2000, American journal of human genetics.

[45]  Christiane Branlant,et al.  A Common Core RNP Structure Shared between the Small Nucleoar Box C/D RNPs and the Spliceosomal U4 snRNP , 2000, Cell.

[46]  J. Kowalak,et al.  Identities and Phylogenetic Comparisons of Posttranscriptional Modifications in 16 S Ribosomal RNA from Haloferax volcanii * , 2000, The Journal of Biological Chemistry.

[47]  E. Fauman,et al.  RNA methylation under heat shock control. , 2000, Molecular cell.

[48]  J. Rossi,et al.  Ribozyme-mediated inhibition of HIV 1 suggests nucleolar trafficking of HIV-1 RNA. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[49]  S. Baserga,et al.  The genes for small nucleolar RNAs in Trypanosoma brucei are organized in clusters and are transcribed as a polycistronic RNA. , 2000, Nucleic acids research.

[50]  A. Poustka,et al.  Gene structure and expression of the mouse dyskeratosis congenita gene, dkc1. , 2000, Genomics.

[51]  X. Darzacq,et al.  Processing of Intron-Encoded Box C/D Small Nucleolar RNAs Lacking a 5′,3′-Terminal Stem Structure , 2000, Molecular and Cellular Biology.

[52]  Y. Watanabe,et al.  Evolutionary appearance of genes encoding proteins associated with box H/ACA snoRNAs: cbf5p in Euglena gracilis, an early diverging eukaryote, and candidate Gar1p and Nop10p homologs in archaebacteria. , 2000, Nucleic acids research.

[53]  E. Maxwell,et al.  Box C/D snoRNA-associated proteins: two pairs of evolutionarily ancient proteins and possible links to replication and transcription. , 2000, RNA.

[54]  E. Binet,et al.  Translational defects of Escherichia coli mutants deficient in the Um(2552) 23S ribosomal RNA methyltransferase RrmJ/FTSJ. , 2000, Biochemical and biophysical research communications.

[55]  T. Lowe,et al.  Fibrillarin-associated box C/D small nucleolar RNAs in Trypanosoma brucei. Sequence conservation and implications for 2'-O-ribose methylation of rRNA. , 2000, The Journal of biological chemistry.

[56]  W. Filipowicz,et al.  In Vitro Assembly of Human H/ACA Small Nucleolar RNPs Reveals Unique Features of U17 and Telomerase RNAs , 2000, Molecular and Cellular Biology.

[57]  S. Eddy,et al.  Homologs of small nucleolar RNAs in Archaea. , 2000, Science.

[58]  J. Bachellerie,et al.  Archaeal homologs of eukaryotic methylation guide small nucleolar RNAs: lessons from the Pyrococcus genomes. , 2000, Journal of molecular biology.

[59]  Roger A. Garrett,et al.  The Ribosome, Structure, Function, Antibiotics, and Cellular Interactions , 2000 .

[60]  T. Kiss,et al.  Characterisation of the U83 and U84 small nucleolar RNAs: two novel 2'-O-ribose methylation guide RNAs that lack complementarities to ribosomal RNAs. , 2000, Nucleic acids research.

[61]  I. Bozzoni,et al.  p62, a novel Xenopus laevis component of box C/D snoRNPs. , 2000, RNA.

[62]  I. Bozzoni,et al.  Identification of a Novel Element Required for Processing of Intron-Encoded Box C/D Small Nucleolar RNAs inSaccharomyces cerevisiae , 2000, Molecular and Cellular Biology.

[63]  D. Boisvert,et al.  Crystal structure of a fibrillarin homologue from Methanococcus jannaschii, a hyperthermophile, at 1.6 Å resolution , 2000, The EMBO journal.

[64]  F. Amaldi,et al.  Box H and box ACA are nucleolar localization elements of U17 small nucleolar RNA. , 1999, Molecular biology of the cell.

[65]  Maurille J. Fournier,et al.  Point Mutations in Yeast CBF5 Can Abolish In Vivo Pseudouridylation of rRNA , 1999, Molecular and Cellular Biology.

[66]  H. Urlaub,et al.  Functional interaction of a novel 15.5kD[U4/U6·U5] tri‐snRNP protein with the5′ stem–loop of U4 snRNA , 1999, The EMBO journal.

[67]  A. Lamond,et al.  Newly assembled snRNPs associate with coiled bodies before speckles, suggesting a nuclear snRNP maturation pathway , 1999, Current Biology.

[68]  X. Darzacq,et al.  Nucleolar Factors Direct the 2′-O-Ribose Methylation and Pseudouridylation of U6 Spliceosomal RNA , 1999, Molecular and Cellular Biology.

[69]  David Tollervey,et al.  Base Pairing between U3 Small Nucleolar RNA and the 5′ End of 18S rRNA Is Required for Pre-rRNA Processing , 1999, Molecular and Cellular Biology.

[70]  A. Matera,et al.  Nuclear bodies: multifaceted subdomains of the interchromatin space. , 1999, Trends in cell biology.

[71]  I. Bozzoni,et al.  The Rev protein is able to transport to the cytoplasm small nucleolar RNAs containing a Rev binding element. , 1999, RNA.

[72]  R. Terns,et al.  Role of the box C/D motif in localization of small nucleolar RNAs to coiled bodies and nucleoli. , 1999, Molecular biology of the cell.

[73]  P. Beal,et al.  Synthetic substrate analogs for the RNA-editing adenosine deaminase ADAR-2. , 1999, Nucleic acids research.

[74]  R. Cedergren,et al.  A small nucleolar RNA:ribozyme hybrid cleaves a nucleolar RNA target in vivo with near-perfect efficiency. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[75]  J. Steitz,et al.  Guided tours: from precursor snoRNA to functional snoRNP. , 1999, Current opinion in cell biology.

[76]  D. Hatton,et al.  Two MAR DNA-binding proteins of the pea nuclear matrix identify a new class of DNA-binding proteins. , 1999, The Plant journal : for cell and molecular biology.

[77]  Y. Komine,et al.  A novel type of non-coding RNA expressed in the rat brain. , 1999, Brain research. Molecular brain research.

[78]  E. Hurt,et al.  Pseudouridine Mapping in the Saccharomyces cerevisiae Spliceosomal U Small Nuclear RNAs (snRNAs) Reveals that Pseudouridine Synthase Pus1p Exhibits a Dual Substrate Specificity for U2 snRNA and tRNA , 1999, Molecular and Cellular Biology.

[79]  S. Eddy,et al.  A computational screen for methylation guide snoRNAs in yeast. , 1999, Science.

[80]  Liang-Hu Qu,et al.  Seven Novel Methylation Guide Small Nucleolar RNAs Are Processed from a Common Polycistronic Transcript by Rat1p and RNase III in Yeast , 1999, Molecular and Cellular Biology.

[81]  Tamás Kiss,et al.  Elements essential for accumulation and function of small nucleolar RNAs directing site‐specific pseudouridylation of ribosomal RNAs , 1999, The EMBO journal.

[82]  S. Clarke,et al.  S-Adenosylmethionine-dependent Methylation in Saccharomyces cerevisiae , 1999, The Journal of Biological Chemistry.

[83]  Jeffrey B. Cheng,et al.  A Box H/ACA Small Nucleolar RNA-Like Domain at the Human Telomerase RNA 3′ End , 1999, Molecular and Cellular Biology.

[84]  P. Legrain,et al.  Yeast RNase III as a key processing enzyme in small nucleolar RNAs metabolism. , 1998, Journal of molecular biology.

[85]  J. Steitz,et al.  Classification of gas5 as a Multi-Small-Nucleolar-RNA (snoRNA) Host Gene and a Member of the 5′-Terminal Oligopyrimidine Gene Family Reveals Common Features of snoRNA Host Genes , 1998, Molecular and Cellular Biology.

[86]  M. Mann,et al.  Cbf5p, a potential pseudouridine synthase, and Nhp2p, a putative RNA-binding protein, are present together with Gar1p in all H BOX/ACA-motif snoRNPs and constitute a common bipartite structure. , 1998, RNA.

[87]  M. Caizergues-Ferrer,et al.  Nhp2p and Nop10p are essential for the function of H/ACA snoRNPs , 1998, The EMBO journal.

[88]  J. Steitz,et al.  Modification of U6 spliceosomal RNA is guided by other small RNAs. , 1998, Molecular cell.

[89]  J. Steitz,et al.  Modifications of U2 snRNA are required for snRNP assembly and pre‐mRNA splicing , 1998, The EMBO journal.

[90]  D. Tollervey,et al.  Birth of the snoRNPs: the evolution of the modification-guide snoRNAs. , 1998, Trends in biochemical sciences.

[91]  T. Pederson,et al.  The plurifunctional nucleolus. , 1998, Nucleic acids research.

[92]  D. Engelke,et al.  Nucleolar localization of early tRNA processing. , 1998, Genes & development.

[93]  W. Filipowicz,et al.  The Host Gene for Intronic U17 Small Nucleolar RNAs in Mammals Has No Protein-Coding Potential and Is a Member of the 5′-Terminal Oligopyrimidine Gene Family , 1998, Molecular and Cellular Biology.

[94]  R. Singer,et al.  The snoRNA box C/D motif directs nucleolar targeting and also couples snoRNA synthesis and localization , 1998, The EMBO journal.

[95]  P. Legrain,et al.  Processing of a dicistronic small nucleolar RNA precursor by the RNA endonuclease Rnt1 , 1998, The EMBO journal.

[96]  S. Gerbi,et al.  Conserved Boxes C and D are essential nucleolar localization elements of U14 and U8 snoRNAs , 1998, The EMBO journal.

[97]  J. Brown,et al.  Processing of vertebrate box C/D small nucleolar RNAs in plant cells. , 1998, European journal of biochemistry.

[98]  D. Tollervey,et al.  Yeast 18S rRNA Dimethylase Dim1p: a Quality Control Mechanism in Ribosome Synthesis? , 1998, Molecular and Cellular Biology.

[99]  M. Bortolin,et al.  Human U19 intron-encoded snoRNA is processed from a long primary transcript that possesses little potential for protein coding. , 1998, RNA.

[100]  D. Tollervey,et al.  The box H + ACA snoRNAs carry Cbf5p, the putative rRNA pseudouridine synthase. , 1998, Genes & development.

[101]  Z. Kiss-László,et al.  Sequence and structural elements of methylation guide snoRNAs essential for site‐specific ribose methylation of pre‐rRNA , 1998, The EMBO journal.

[102]  P J Shaw,et al.  Clusters of multiple different small nucleolar RNA genes in plants are expressed as and processed from polycistronic pre‐snoRNAs , 1997, The EMBO journal.

[103]  M. Fournier,et al.  The rRNA-processing function of the yeast U14 small nucleolar RNA can be rescued by a conserved RNA helicase-like protein , 1997, Molecular and cellular biology.

[104]  J. Bachellerie,et al.  Guiding ribose methylation of rRNA. , 1997, Trends in biochemical sciences.

[105]  Gary J Olsen,et al.  Archaeal Genomics: An Overview , 1997, Cell.

[106]  J. Steitz,et al.  Sno Storm in the Nucleolus: New Roles for Myriad Small RNPs , 1997, Cell.

[107]  Tamás Kiss,et al.  Site-Specific Pseudouridine Formation in Preribosomal RNA Is Guided by Small Nucleolar RNAs , 1997, Cell.

[108]  J. Ni,et al.  Small Nucleolar RNAs Direct Site-Specific Synthesis of Pseudouridine in Ribosomal RNA , 1997, Cell.

[109]  R. Emeson,et al.  Regulation of serotonin-2C receptor G-protein coupling by RNA editing , 1997, Nature.

[110]  F. Fasiolo,et al.  Intron-dependent enzymatic formation of modified nucleosides in eukaryotic tRNAs: a review. , 1997, Biochimie.

[111]  T. Kiss,et al.  The family of box ACA small nucleolar RNAs is defined by an evolutionarily conserved secondary structure and ubiquitous sequence elements essential for RNA accumulation. , 1997, Genes & development.

[112]  J Ofengand,et al.  Mapping to nucleotide resolution of pseudouridine residues in large subunit ribosomal RNAs from representative eukaryotes, prokaryotes, archaebacteria, mitochondria and chloroplasts. , 1997, Journal of molecular biology.

[113]  D. Tollervey Trans-acting factors in ribosome synthesis. , 1996, Experimental Cell Research.

[114]  E. Maxwell,et al.  5'ETS rRNA processing facilitated by four small RNAs: U14, E3, U17, and U3. , 1996, RNA.

[115]  J. Bachellerie,et al.  Targeted ribose methylation of RNA in vivo directed by tailored antisense RNA guides , 1996, Nature.

[116]  D. Santi,et al.  Identification of new RNA modifying enzymes by iterative genome search using known modifying enzymes as probes. , 1996, Nucleic acids research.

[117]  Laurie Smith,et al.  The RNA World of the Nucleolus: Two Major Families of Small RNAs Defined by Different Box Elements with Related Functions , 1996, Cell.

[118]  J. Bachellerie,et al.  Intron-encoded, antisense small nucleolar RNAs: the characterization of nine novel species points to their direct role as guides for the 2'-O-ribose methylation of rRNAs. , 1996, Journal of molecular biology.

[119]  Tamás Kiss,et al.  Site-Specific Ribose Methylation of Preribosomal RNA: A Novel Function for Small Nucleolar RNAs , 1996, Cell.

[120]  J. Hughes,et al.  Functional base-pairing interaction between highly conserved elements of U3 small nucleolar RNA and the small ribosomal subunit RNA. , 1996, Journal of molecular biology.

[121]  W. Filipowicz,et al.  Characterization of the intron-encoded U19 RNA, a new mammalian small nucleolar RNA that is not associated with fibrillarin , 1996, Molecular and cellular biology.

[122]  A. Fatica,et al.  Processing of the intron‐encoded U16 and U18 snoRNAs: the conserved C and D boxes control both the processing reaction and the stability of the mature snoRNA. , 1996, The EMBO journal.

[123]  J. Bachellerie,et al.  SnoRNA U21 is also intron‐encoded in Drosophila melanogaster but in a different host‐gene as compared to warm‐blooded vertebrates , 1996, FEBS letters.

[124]  J. Steitz,et al.  A mammalian gene with introns instead of exons generating stable RNA products , 1996, Nature.

[125]  J. Bachellerie,et al.  Novel intron-encoded small nucleolar RNAs with long sequence complementarities to mature rRNAs involved in ribosome biogenesis. , 1995, Biochemistry and cell biology = Biochimie et biologie cellulaire.

[126]  J. Ofengand,et al.  The pseudouridine residues of ribosomal RNA. , 1995, Biochemistry and cell biology = Biochimie et biologie cellulaire.

[127]  J. Bachellerie,et al.  U24, a novel intron-encoded small nucleolar RNA with two 12 nt long, phylogenetically conserved complementarities to 28S rRNA. , 1995, Nucleic acids research.

[128]  Z. Pálfi,et al.  Spliced leader-associated RNA of trypanosomes. Sequence conservation and association with protein components common to trans-spliceosomal ribonucleoproteins. , 1994, The Journal of biological chemistry.

[129]  J. Bachellerie,et al.  U21, a novel small nucleolar RNA with a 13 nt. complementarity to 28S rRNA, is encoded in an intron of ribosomal protein L5 gene in chicken and mammals. , 1994, Nucleic acids research.

[130]  J. Bachellerie,et al.  U20, a novel small nucleolar RNA, is encoded in an intron of the nucleolin gene in mammals , 1994, Molecular and cellular biology.

[131]  K. A. Amiri Fibrillarin-like proteins occur in the domain Archaea , 1994, Journal of bacteriology.

[132]  D. Tollervey,et al.  Yeast snR30 is a small nucleolar RNA required for 18S rRNA synthesis , 1993, Molecular and cellular biology.

[133]  C. Daniels,et al.  In vivo processing of an intron‐containing archael tRNA , 1993, Molecular microbiology.

[134]  D. Tollervey,et al.  Temperature-sensitive mutations demonstrate roles for yeast fibrillarin in pre-rRNA processing, pre-rRNA methylation, and ribosome assembly , 1993, Cell.

[135]  P. Mitchell,et al.  Clustering of modified nucleotides at the functional center of bacterial ribosomal RNA , 1993, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[136]  H. Nielsen,et al.  A novel class of nucleolar RNAs from Tetrahymena , 1992, FEBS letters.

[137]  C. Gustafsson,et al.  The gene for a tRNA modifying enzyme, m5U54-methyltransferase, is essential for viability in Escherichia coli. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[138]  D. Tollervey A yeast small nuclear RNA is required for normal processing of pre‐ribosomal RNA. , 1987, The EMBO journal.

[139]  R. Gupta Halobacterium volcanii tRNAs. Identification of 41 tRNAs covering all amino acids, and the sequences of 33 class I tRNAs. , 1984, The Journal of biological chemistry.

[140]  W. Reik,et al.  Genomic imprinting: parental influence on the genome , 2001, Nature Reviews Genetics.

[141]  R. Nicholls,et al.  Genome organization, function, and imprinting in Prader-Willi and Angelman syndromes. , 2001, Annual review of genomics and human genetics.

[142]  K. Rudd,et al.  Bacterial, Archaeal, and Organellar rRNA Pseudouridines and Methylated Nucleosides and Their Enzymes , 2000 .

[143]  A. Michienzi,et al.  リボザイム介在HIV1の阻害はHIV‐1 RNAの核小体輸送を示唆する , 2000 .

[144]  Kathleen R. Noon,et al.  Posttranscriptional Modifications in 16S and 23S rRNAs of the Archaeal Hyperthermophile Sulfolobus solfataricus , 1998, Journal of bacteriology.

[145]  J. Bachellerie,et al.  Small Nucleolar RNAs Guide the Ribose Methylations of Eukaryotic rRNAs , 1998 .

[146]  Maurille J. Fournier,et al.  The Pseudouridine Residues of rRNA: Number, Location, Biosynthesis, and Function , 1998 .

[147]  J. Bachellerie,et al.  Processing of fibrillarin-associated snoRNAs from pre-mRNA introns: an exonucleolytic process exclusively directed by the common stem-box terminal structure. , 1996, Biochimie.

[148]  D. Barlow,et al.  Characteristics of imprinted genes , 1995, Nature Genetics.

[149]  J. Liu,et al.  Intronic U14 snoRNAs of Xenopus laevis are located in two different parent genes and can be processed from their introns during early oogenesis. , 1995, Nucleic acids research.

[150]  J. Ofengand,et al.  Pseudouridine and O2'-methylated nucleosides. Significance of their selective occurrence in rRNA domains that function in ribosome-catalyzed synthesis of the peptide bonds in proteins. , 1995, Biochimie.

[151]  B. Maden The numerous modified nucleotides in eukaryotic ribosomal RNA. , 1990, Progress in nucleic acid research and molecular biology.