Isometric Tensor Network States in Two Dimensions.

Tensor-network states (TNS) are a promising but numerically challenging tool for simulating two-dimensional (2D) quantum many-body problems. We introduce an isometric restriction of the TNS ansatz that allows for highly efficient contraction of the network. We consider two concrete applications using this ansatz. First, we show that a matrix-product state representation of a 2D quantum state can be iteratively transformed into an isometric 2D TNS. Second, we introduce a 2D version of the time-evolving block decimation algorithm for approximating of the ground state of a Hamiltonian as an isometric TNS-which we demonstrate for the 2D transverse field Ising model.

[1]  M. A. Martin-Delgado,et al.  Equivalence of the variational matrix product method and the density matrix renormalization group applied to spin chains , 1998 .

[2]  友紀子 中川 SoC , 2021, Journal of Japan Society for Fuzzy Theory and Intelligent Informatics.

[3]  Guifré Vidal Efficient simulation of one-dimensional quantum many-body systems. , 2004, Physical review letters.

[4]  F. Verstraete,et al.  Faster methods for contracting infinite two-dimensional tensor networks , 2017, Physical Review B.

[5]  Michael Levin,et al.  Tensor renormalization group approach to two-dimensional classical lattice models. , 2006, Physical review letters.

[6]  M. Horodecki,et al.  The entanglement of purification , 2002, quant-ph/0202044.

[7]  Z. Y. Xie,et al.  Second renormalization of tensor-network states. , 2008, Physical review letters.

[8]  T. Xiang,et al.  Accurate determination of tensor network state of quantum lattice models in two dimensions. , 2008, Physical review letters.

[9]  Frank Verstraete,et al.  Gradient methods for variational optimization of projected entangled-pair states , 2016, 1606.09170.

[10]  Temple,et al.  PP , 2018, Catalysis from A to Z.

[11]  U. Schollwoeck The density-matrix renormalization group in the age of matrix product states , 2010, 1008.3477.

[12]  J I Cirac,et al.  Continuous matrix product states for quantum fields. , 2010, Physical review letters.

[13]  Ivan Oseledets,et al.  Unifying time evolution and optimization with matrix product states , 2014, 1408.5056.

[14]  Philippe Corboz,et al.  Variational optimization with infinite projected entangled-pair states , 2016, 1605.03006.

[15]  T. Nishino,et al.  Corner Transfer Matrix Renormalization Group Method , 1995, cond-mat/9507087.

[16]  J I Cirac,et al.  String order and symmetries in quantum spin lattices. , 2008, Physical review letters.

[17]  J Chen,et al.  Gapless Spin-Liquid Ground State in the S=1/2 Kagome Antiferromagnet. , 2016, Physical review letters.

[18]  J I Cirac,et al.  Classical simulation of infinite-size quantum lattice systems in two spatial dimensions. , 2008, Physical review letters.

[19]  Philippe Corboz,et al.  Tensor network study of the Shastry-Sutherland model in zero magnetic field , 2012, 1212.2983.

[20]  F. Verstraete,et al.  Matrix product states represent ground states faithfully , 2005, cond-mat/0505140.

[21]  J. Bardarson,et al.  Finding purifications with minimal entanglement , 2017, Physical Review B.

[22]  N Maeshima,et al.  Vertical density matrix algorithm: a higher-dimensional numerical renormalization scheme based on the tensor product state ansatz. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[23]  Michael M. Wolf,et al.  Sequentially generated states for the study of two-dimensional systems , 2008, 0802.2472.

[24]  M. Hastings,et al.  An area law for one-dimensional quantum systems , 2007, 0705.2024.

[25]  Z. Y. Xie,et al.  Coarse-graining renormalization by higher-order singular value decomposition , 2012, 1201.1144.

[26]  Garnet Kin-Lic Chan,et al.  Stripe order in the underdoped region of the two-dimensional Hubbard model , 2016, Science.

[27]  G. Evenbly,et al.  Algorithms for Entanglement Renormalization: Boundaries, Impurities and Interfaces , 2013, 1312.0303.

[28]  Steven R. White,et al.  Real-space parallel density matrix renormalization group , 2013, 1301.3494.

[29]  F. Verstraete,et al.  Matrix product states, projected entangled pair states, and variational renormalization group methods for quantum spin systems , 2008, 0907.2796.

[30]  Tomotoshi Nishino,et al.  Corner Transfer Matrix Algorithm for Classical Renormalization Group , 1997 .

[31]  White,et al.  Density matrix formulation for quantum renormalization groups. , 1992, Physical review letters.

[32]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[33]  F. Verstraete,et al.  Matrix product state renormalization , 2015, 1509.01522.

[34]  Östlund,et al.  Thermodynamic limit of density matrix renormalization. , 1995, Physical review letters.