Distributed Randomized Algorithms for the PageRank Computation

In the search engine of Google, the PageRank algorithm plays a crucial role in ranking the search results. The algorithm quantifies the importance of each web page based on the link structure of the web. We first provide an overview of the original problem setup. Then, we propose several distributed randomized schemes for the computation of the PageRank, where the pages can locally update their values by communicating to those connected by links. The main objective of the paper is to show that these schemes asymptotically converge in the mean-square sense to the true PageRank values. A detailed discussion on the close relations to the multi-agent consensus problems is also given.

[1]  Stephen P. Boyd,et al.  Randomized gossip algorithms , 2006, IEEE Transactions on Information Theory.

[2]  Roberto Tempo,et al.  Computing the PageRank Variation for Fragile Web Data , 2009 .

[3]  Wei Ren,et al.  Information consensus in multivehicle cooperative control , 2007, IEEE Control Systems.

[4]  John N. Tsitsiklis,et al.  Parallel and distributed computation , 1989 .

[5]  Mehran Mesbahi,et al.  Agreement over random networks , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[6]  John N. Tsitsiklis,et al.  Comments on "Coordination of Groups of Mobile Autonomous Agents Using Nearest Neighbor Rules" , 2007, IEEE Trans. Autom. Control..

[7]  Roberto Tempo,et al.  A distributed randomized approach for the PageRank computation: Part 1 , 2008, 2008 47th IEEE Conference on Decision and Control.

[8]  Taher H. Haveliwala,et al.  Adaptive methods for the computation of PageRank , 2004 .

[9]  Mireille E. Broucke,et al.  Formations of vehicles in cyclic pursuit , 2004, IEEE Transactions on Automatic Control.

[10]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[11]  R. Tempo,et al.  Randomized Algorithms for Analysis and Control of Uncertain Systems , 2004 .

[12]  Jeremy T. Bradley,et al.  Asynchronous iterative solution for state-based performance metrics , 2007, SIGMETRICS '07.

[13]  Vincent D. Blondel,et al.  Three and higher dimensional autonomous formations: Rigidity, persistence and structural persistence , 2007, Autom..

[14]  Zhihua Qu,et al.  Cooperative Control of Dynamical Systems With Application to Autonomous Vehicles , 2008, IEEE Transactions on Automatic Control.

[15]  Alireza Tahbaz-Salehi,et al.  A Necessary and Sufficient Condition for Consensus Over Random Networks , 2008, IEEE Transactions on Automatic Control.

[16]  Panos J. Antsaklis,et al.  Special Issue on Technology of Networked Control Systems , 2007 .

[17]  Er-Wei Bai,et al.  Distributed randomized PageRank computation based on web aggregation , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[18]  R. Srikant,et al.  Quantized Consensus , 2006, 2006 IEEE International Symposium on Information Theory.

[19]  Darald J. Hartfiel,et al.  Markov Set-Chains , 1998 .

[20]  Vahab S. Mirrokni,et al.  Local Computation of PageRank Contributions , 2007, WAW.

[21]  Ruggero Carli,et al.  Symmetries in the coordinated consensus problem , 2006 .

[22]  Konstantin Avrachenkov,et al.  Monte Carlo Methods in PageRank Computation: When One Iteration is Sufficient , 2007, SIAM J. Numer. Anal..

[23]  I. Miller Probability, Random Variables, and Stochastic Processes , 1966 .

[24]  Luc Moreau,et al.  Stability of multiagent systems with time-dependent communication links , 2005, IEEE Transactions on Automatic Control.

[25]  H. Saunders,et al.  Probability, Random Variables and Stochastic Processes (2nd Edition) , 1989 .

[26]  Roberto Tempo,et al.  Distributed PageRank computation with link failures , 2009, 2009 American Control Conference.

[27]  Kurt Bryan,et al.  The $25,000,000,000 Eigenvector: The Linear Algebra behind Google , 2006, SIAM Rev..

[28]  E. Seneta Non-negative Matrices and Markov Chains , 2008 .

[29]  Jie Lin,et al.  Coordination of groups of mobile autonomous agents using nearest neighbor rules , 2003, IEEE Trans. Autom. Control..

[30]  Shaozhi Ye,et al.  Distributed PageRank computation based on iterative aggregation-disaggregation methods , 2005, CIKM '05.

[31]  Amy Nicole Langville,et al.  Google's PageRank and beyond - the science of search engine rankings , 2006 .

[32]  John G. Proakis,et al.  Probability, random variables and stochastic processes , 1985, IEEE Trans. Acoust. Speech Signal Process..

[33]  Bruno O. Shubert,et al.  Random variables and stochastic processes , 1979 .

[34]  Roberto Tempo,et al.  Monte carlo and las vegas randomized algorithms for systems and control : An introduction , 2007 .

[35]  Chai Wah Wu,et al.  Synchronization and convergence of linear dynamics in random directed networks , 2006, IEEE Transactions on Automatic Control.

[36]  Manfredi Maggiore,et al.  Necessary and sufficient graphical conditions for formation control of unicycles , 2005, IEEE Transactions on Automatic Control.

[37]  Z. Qu,et al.  Cooperative Control of Dynamical Systems: Applications to Autonomous Vehicles , 2009 .

[38]  Roberto Tempo,et al.  Monte Carlo and Las Vegas Randomized Algorithms for Systems and Control? , 2007, Eur. J. Control.

[39]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[40]  Sergey Brin,et al.  The Anatomy of a Large-Scale Hypertextual Web Search Engine , 1998, Comput. Networks.

[41]  Valerie Isham,et al.  Non‐Negative Matrices and Markov Chains , 1983 .