A two‐dimensional spectral‐element method for computing spherical‐earth seismograms – I. Moment‐tensor source

SUMMARY We develop a spectral-element method for computing the full 3-D moment-tensor and point-force response of a spherically symmetric earth model in a 2-D semi-circular computational domain. The full elastodynamic response to a six-component moment tensor at an earthquake hypocentre and a three-component point force at a seismic station can be determined by solving six independent 2-D problems, three for a monopole source, two for a dipole source, and one for a quadrupole source. This divide-and-conquer 3-D to 2-D reduction strategy provides a basis for the efficient computation of exact Frechet sensitivity kernels in a spherically symmetric earth, with all wavefield features accounted for. To focus on the novel inclusion of the full source in a cylindrical coordinate system, we describe the 2-D weak formulation of the set of elastodynamic equations, its discretization using spectral elements, and the associated axial boundary conditions and source representations for each of the excitation types in the case of a homogeneous, solid elastic sphere. The method is numerically validated against both analytical solutions and normal-mode summation.

[1]  F. Scherbaum,et al.  Acoustic simulation of P‐wave propagation in a heterogeneous spherical earth: numerical method and application to precursor waves to PKPdf , 2000 .

[2]  Alexandre Fournier,et al.  Spherical‐earth Fréchet sensitivity kernels , 2007 .

[3]  Emmanuel Chaljub Modélisation numérique de la propagation d'ondes sismiques en géométrie sphérique : application à la sismologie globale , 2000 .

[4]  B. Kennett,et al.  Seismic wavefield calculation for laterally heterogeneous whole earth models using the pseudospectral method , 1998 .

[5]  Robert J. Geller,et al.  Computation of synthetic seismograms and their partial derivatives for heterogeneous media with arbitrary natural boundary conditions using the Direct Solution Method , 1994 .

[6]  J. Tromp,et al.  Theoretical Global Seismology , 1998 .

[7]  Jean-Pierre Vilotte,et al.  Spectral Element Analysis in Seismology , 2007 .

[8]  A V Hershey,et al.  Computation of Special Functions , 1978 .

[9]  Robert J. Geller,et al.  DSM complete synthetic seismograms : SH, spherically symmetric, case , 1994 .

[10]  Johan O. A. Robertsson,et al.  A numerical free-surface condition for elastic/viscoelastic finite-difference modeling in the presence of topography , 1996 .

[11]  G. Karniadakis,et al.  Spectral/hp Element Methods for CFD , 1999 .

[12]  Wolfgang Friederich,et al.  COMPLETE SYNTHETIC SEISMOGRAMS FOR A SPHERICALLY SYMMETRIC EARTH BY A NUMERICAL COMPUTATION OF THE GREEN'S FUNCTION IN THE FREQUENCY DOMAIN , 1995 .

[13]  Kenji Kawai,et al.  Complete synthetic seismograms up to 2 Hz for transversely isotropic spherically symmetric media , 2006 .

[14]  Ezio Faccioli,et al.  2d and 3D elastic wave propagation by a pseudo-spectral domain decomposition method , 1997 .

[15]  Emmanuel Chaljub,et al.  Sensitivity of SS precursors to topography on the upper‐mantle 660‐km discontinuity , 1997 .

[16]  P. Fischer,et al.  High-Order Methods for Incompressible Fluid Flow , 2002 .

[17]  J. Marsden,et al.  Variational Integrators and the Newmark Algorithm for Conservative and Dissipative Mechanical Systems , 2000 .

[18]  B. Romanowicz,et al.  Modelling of coupled normal modes of the Earth: the spectral method , 1990 .

[19]  M. Dumbser,et al.  An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes - I. The two-dimensional isotropic case with external source terms , 2006 .

[20]  Emmanuel Chaljub,et al.  Spectral element modelling of three-dimensional wave propagation in a self-gravitating Earth with an arbitrarily stratified outer core , 2003, physics/0308102.

[21]  Jean-Pierre Vilotte,et al.  Solving elastodynamics in a fluid-solid heterogeneous sphere: a parallel spectral element approximation on non-conforming grids , 2003 .

[22]  Heiner Igel,et al.  P‐SV wave propagation in the Earth's mantle using finite differences: Application to heterogeneous lowermost mantle structure , 1996 .

[23]  D. Komatitsch,et al.  Spectral-element simulations of global seismic wave propagation: II. Three-dimensional models, oceans, rotation and self-gravitation , 2002 .

[24]  Chen Ji,et al.  A 14.6 billion degrees of freedom, 5 teraflops, 2.5 terabyte earthquake simulation on the Earth Simulator , 2003, ACM/IEEE SC 2003 Conference (SC'03).

[25]  D. L. Anderson,et al.  Preliminary reference earth model , 1981 .

[26]  A. Fournier Incompressible fluid flows in rapidly rotating cavities , 2004 .

[27]  Robert J. Geller,et al.  Comparison of Accuracy and Efficiency of Time-domain Schemes for Calculating Synthetic Seismograms , 2000 .

[28]  D. Komatitsch,et al.  The spectral element method: An efficient tool to simulate the seismic response of 2D and 3D geological structures , 1998, Bulletin of the Seismological Society of America.

[29]  Chen Ji,et al.  Broadband modeling of the 2002 Denali fault earthquake on the Earth Simulator , 2003 .

[30]  Jean-Pierre Vilotte,et al.  Application of the spectral‐element method to the axisymmetric Navier–Stokes equation , 2004 .

[31]  Heiner Igel,et al.  SH-wave propagation in the whole mantle using high-order finite differences , 1995 .

[32]  Hiroshi Takenaka,et al.  Quasi-spherical approach for seismic wave modeling in a 2-D slice of a global Earth model with lateral heterogeneity , 2005 .

[33]  D. Komatitsch,et al.  Spectral-element simulations of global seismic wave propagation—I. Validation , 2002 .

[34]  Jean-Pierre Vilotte,et al.  A Fourier-spectral element algorithm for thermal convection in rotating axisymmetric containers , 2005 .

[35]  T. Nissen‐Meyer,et al.  Wave propagation in 3D spherical sections: effects of subduction zones , 2002 .

[36]  Robert J. Geller,et al.  Optimally accurate second-order time-domain finite difference scheme for the elastic equation of motion: one-dimensional case , 1998 .

[37]  Géza Seriani,et al.  3-D large-scale wave propagation modeling by spectral element method on Cray T3E multiprocessor , 1998 .

[38]  D. Komatitsch,et al.  Introduction to the spectral element method for three-dimensional seismic wave propagation , 1999 .

[39]  Robert J. Geller,et al.  Complete synthetic seismograms for 3-D heterogeneous Earth models computed using modified DSM operators and their applicability to inversion for Earth structure , 2000 .

[40]  David R. O'Hallaron,et al.  Large-scale simulation of elastic wave propagation in heterogeneous media on parallel computers , 1998 .