A moiré theory for probing grain boundary structure in graphene

[1]  H. Johnson,et al.  Topologically derived dislocation theory for twist and stretch moiré superlattices in bilayer graphene , 2020, 2009.07919.

[2]  Xuesong Li,et al.  Surface crystallographic structure insensitive growth of oriented graphene domains on Cu substrates , 2020 .

[3]  R. Ruoff,et al.  Growth of Single-Layer and Multilayer Graphene on Cu/Ni Alloy Substrates. , 2020, Accounts of chemical research.

[4]  M. Willinger,et al.  The Coalescence Behavior of Two-Dimensional Materials Revealed by Multi-Scale In Situ Imaging during Chemical Vapor Deposition Growth. , 2020, ACS nano.

[5]  H. Johnson,et al.  Controlling Rotation of Two-Dimensional Material Flakes. , 2019, ACS nano.

[6]  H. Johnson,et al.  Grain boundary structure and migration in graphene via the displacement shift complete lattice , 2019, Acta Materialia.

[7]  Yang Wang,et al.  Chemical vapor deposition growth of scalable monolayer polycrystalline graphene films with millimeter-sized domains , 2018 .

[8]  Takashi Taniguchi,et al.  Unconventional superconductivity in magic-angle graphene superlattices , 2018, Nature.

[9]  Huajian Gao,et al.  Phase field crystal modeling of grain boundary structures and growth in polycrystalline graphene , 2017, Journal of the Mechanics and Physics of Solids.

[10]  H. Johnson,et al.  Toward Moiré engineering in 2D materials via dislocation theory , 2017, 1709.10363.

[11]  M. Buehler,et al.  Unusually low and density-insensitive thermal conductivity of three-dimensional gyroid graphene. , 2017, Nanoscale.

[12]  Yilun Liu,et al.  Negative Poisson's ratio in rippled graphene. , 2017, Nanoscale.

[13]  K. Elder,et al.  Influence of misorientation on graphene Moire patterns , 2017 .

[14]  Enge Wang,et al.  Ultrafast growth of single-crystal graphene assisted by a continuous oxygen supply. , 2016, Nature nanotechnology.

[15]  I. Ford,et al.  Ethylene decomposition on Ir(111): initial path to graphene formation. , 2016, Physical chemistry chemical physics : PCCP.

[16]  H. Johnson,et al.  Critical thickness for interface misfit dislocation formation in two-dimensional materials , 2016 .

[17]  R. Ruoff,et al.  Oxygen-activated growth and bandgap tunability of large single-crystal bilayer graphene. , 2016, Nature nanotechnology.

[18]  Sudhir B. Kylasa,et al.  The ReaxFF reactive force-field: development, applications and future directions , 2016 .

[19]  A. Kirkland,et al.  Partial Dislocations in Graphene and Their Atomic Level Migration Dynamics. , 2015, Nano letters.

[20]  Zhongfan Liu,et al.  Moiré patterns and step edges on few-layer graphene grown on nickel films , 2014 .

[21]  Carl W. Magnuson,et al.  The Role of Surface Oxygen in the Growth of Large Single-Crystal Graphene on Copper , 2013, Science.

[22]  N. Lavrik,et al.  Graphene Nucleation Density on Copper: Fundamental Role of Background Pressure , 2013 .

[23]  J. Frenken,et al.  Kinetics of graphene formation on Rh(111) investigated by in situ scanning tunneling microscopy. , 2013, ACS nano.

[24]  Pinshane Y. Huang,et al.  Strain solitons and topological defects in bilayer graphene , 2013, Proceedings of the National Academy of Sciences.

[25]  Chongwu Zhou,et al.  Review of chemical vapor deposition of graphene and related applications. , 2013, Accounts of chemical research.

[26]  Jiangtao Wu,et al.  The nature of strength enhancement and weakening by pentagon-heptagon defects in graphene. , 2012, Nature materials.

[27]  K. Hermann Periodic overlayers and moiré patterns: theoretical studies of geometric properties , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[28]  O. Hod,et al.  Robust Superlubricity in Graphene/h-BN Heterojunctions. , 2012, The journal of physical chemistry letters.

[29]  A. Krasheninnikov,et al.  Atom-by-atom observation of grain boundary migration in graphene. , 2012, Nano letters.

[30]  Y. Homma,et al.  In situ scanning electron microscopy of graphene growth on polycrystalline Ni substrate , 2012 .

[31]  Jannik C. Meyer,et al.  Mechanical properties of polycrystalline graphene based on a realistic atomistic model , 2012, 1203.4196.

[32]  A. Serra,et al.  The disconnection mechanism of coupled migration and shear at grain boundaries , 2012 .

[33]  D. Nečas,et al.  Gwyddion: an open-source software for SPM data analysis , 2012 .

[34]  P. Datskos,et al.  Role of hydrogen in chemical vapor deposition growth of large single-crystal graphene. , 2011, ACS nano.

[35]  C. Oshima,et al.  In-situ observation of graphene growth on Ni(111) , 2011 .

[36]  T. Michely,et al.  Growth temperature dependent graphene alignment on Ir(111) , 2011 .

[37]  W. Regan,et al.  Grain boundary mapping in polycrystalline graphene. , 2011, ACS nano.

[38]  Pinshane Y. Huang,et al.  Grains and grain boundaries in single-layer graphene atomic patchwork quilts , 2010, Nature.

[39]  S. Louie,et al.  Electronic transport in polycrystalline graphene. , 2010, Nature materials.

[40]  T. Michely,et al.  Growth of graphene on Ir(111) , 2009 .

[41]  J. Flege,et al.  Epitaxial graphene on ruthenium. , 2008, Nature materials.

[42]  A. V. van Duin,et al.  ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation. , 2008, The journal of physical chemistry. A.

[43]  S. Marchini,et al.  Scanning tunneling microscopy of graphene on Ru(0001) , 2007 .

[44]  A. V. Duin,et al.  ReaxFF: A Reactive Force Field for Hydrocarbons , 2001 .

[45]  T. Yokoyama,et al.  Growth and moiré superstructure of palladium films on Ni(111) studied by STM , 1999 .

[46]  Kobayashi Moiré pattern in scanning tunneling microscopy of monolayer graphite. , 1994, Physical Review B (Condensed Matter).

[47]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[48]  Zhuhua Zhang,et al.  Unraveling the Sinuous Grain Boundaries in Graphene , 2015 .