A Landau–Ginzburg mirror theorem via matrix factorizations

Abstract For an invertible quasihomogeneous polynomial 𝒘 {{\boldsymbol{w}}} we prove an all-genus mirror theorem relating two cohomological field theories of Landau–Ginzburg type. On the B-side it is the Saito–Givental theory for a specific choice of a primitive form. On the A-side, it is the matrix factorization CohFT for the dual singularity 𝒘 T {{\boldsymbol{w}}^{T}} with the maximal diagonal symmetry group.

[1]  Yefeng Shen,et al.  Landau-Ginzburg Mirror Symmetry Conjecture , 2015, 1503.01757.

[2]  Yefeng Shen,et al.  LG/CY correspondence for elliptic orbifold curves via modularity , 2016, Journal of Differential Geometry.

[3]  Kyoji Saito,et al.  Mirror symmetry for exceptional unimodular singularities , 2014, 1405.4530.

[4]  Kyoji Saito,et al.  Primitive forms via polyvector fields , 2013, 1311.1659.

[5]  Jérémy Guéré A Landau--Ginzburg mirror theorem without concavity , 2013, 1307.5070.

[6]  Jun Li,et al.  Witten’s top Chern class via cosection localization , 2013, 1303.7126.

[7]  T. Milanov Analyticity of the total ancestor potential in singularity theory , 2013, 1303.3103.

[8]  T. Milanov,et al.  Global mirror symmetry for invertible simple elliptic singularities , 2012, 1210.6862.

[9]  C. Teleman The structure of 2D semi-simple field theories , 2007, Inventiones mathematicae.

[10]  Yefeng Shen,et al.  Landau-Ginzburg/Calabi-Yau Correspondence of all Genera for Elliptic Orbifold $\mathbb{p}^1$ , 2011, 1106.6270.

[11]  A. Polishchuk,et al.  Matrix factorizations and Cohomological Field Theories , 2011, 1105.2903.

[12]  J. M. Boardman,et al.  Singularities of differentiable maps , 2011 .

[13]  A. Polishchuk,et al.  Chern characters and Hirzebruch-Riemann-Roch formula for matrix factorizations , 2010, 1002.2116.

[14]  D. Zvonkine,et al.  Tautological relations and the r-spin Witten conjecture , 2006, math/0612510.

[15]  Marc Krawitz FJRW rings and Landau-Ginzburg Mirror Symmetry , 2009, 0906.0796.

[16]  S. Shadrin BCOV theory via Givental group action on cohomological field theories , 2008, 0810.0725.

[17]  A. Chiodo Towards an enumerative geometry of the moduli space of twisted curves and rth roots , 2006, Compositio Mathematica.

[18]  Tyler Jarvis,et al.  The Witten equation, mirror symmetry and quantum singularity theory , 2007, 0712.4021.

[19]  Tyler Jarvis,et al.  The Witten equation and its virtual fundamental cycle , 2007, 0712.4025.

[20]  Tyler Jarvis,et al.  Moduli Spaces of Higher Spin Curves and Integrable Hierarchies , 1999, Compositio Mathematica.

[21]  A. Polishchuk,et al.  Algebraic construction of Witten's top Chern class , 2000, math/0011032.

[22]  A. Givental Semisimple Frobenius structures at higher genus , 2000, math/0008067.

[23]  Yuri I. Manin,et al.  Frobenius manifolds, quantum cohomology, and moduli spaces , 1999 .

[24]  Per Berglund,et al.  Landau-Ginzburg orbifolds, mirror symmetry and the elliptic genus , 1994, hep-th/9401029.

[25]  B. Dubrovin Geometry of 2D topological field theories , 1994, hep-th/9407018.

[26]  M. Kontsevich,et al.  Gromov-Witten classes, quantum cohomology, and enumerative geometry , 1994, hep-th/9402147.

[27]  M. Kreuzer The mirror map for invertible LG models , 1994, hep-th/9402114.

[28]  Tristan Hubsch,et al.  A generalized construction of mirror manifolds , 1992, Nuclear Physics B.

[29]  E. Witten Algebraic Geometry Associated with Matrix Models of Two Dimensional Gravity , 1993 .

[30]  H. Skarke,et al.  On the classification of quasihomogeneous functions , 1992, hep-th/9202039.

[31]  C. Vafa,et al.  LANDAU-GINZBURG ORBIFOLDS , 1990 .

[32]  B. Greene,et al.  Duality in {Calabi-Yau} Moduli Space , 1990 .

[33]  Kyoji Saito,et al.  Period Mapping Associated to a Primitive Form , 1983 .

[34]  Kyoji Saito Primitive forms for a universal unfolding of a function with an isolated critical point , 1982 .

[35]  C. Wall A Note on Symmetry of Singularities , 1980 .