On the Realization of the Wolfe Conditions in Reduced Quasi-Newton Methods for Equality Constrained Optimization

This paper describes a reduced quasi-Newton method for solving equality constrained optimization problems. A major difficulty encountered by this type of algorithm is the design of a consistent technique for maintaining the positive definiteness of the matrices approximating the reduced Hessian of the Lagrangian. A new approach is proposed in this paper. The idea is to search for the next iterate along a piecewise linear path. The path is designed so that some generalized Wolfe conditions can be satisfied. These conditions allow the algorithm to sustain the positive definiteness of the matrices from iteration to iteration by a mechanism that has turned out to be efficient in unconstrained optimization.

[1]  L. Armijo Minimization of functions having Lipschitz continuous first partial derivatives. , 1966 .

[2]  P. Wolfe Convergence Conditions for Ascent Methods. II: Some Corrections , 1971 .

[3]  Jon W. Tolle,et al.  Exact penalty functions in nonlinear programming , 1973, Math. Program..

[4]  W. Boothby An introduction to differentiable manifolds and Riemannian geometry , 1975 .

[5]  Shih-Ping Han,et al.  Superlinearly convergent variable metric algorithms for general nonlinear programming problems , 1976, Math. Program..

[6]  R. Tapia Diagonalized multiplier methods and quasi-Newton methods for constrained optimization , 1977 .

[7]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[8]  W. Murray,et al.  Projected Lagrangian Methods Based on the Trajectories of Penalty and Barrier Functions. , 1978 .

[9]  M. J. D. Powell,et al.  A fast algorithm for nonlinearly constrained optimization calculations , 1978 .

[10]  B. N. Pshenichnyi,et al.  Numerical Methods in Extremal Problems. , 1978 .

[11]  M. J. D. Powell,et al.  Algorithms for nonlinear constraints that use lagrangian functions , 1978, Math. Program..

[12]  T. M. Williams,et al.  Practical Methods of Optimization. Vol. 1: Unconstrained Optimization , 1980 .

[13]  Philip E. Gill,et al.  Practical optimization , 1981 .

[14]  Andrew R. Conn,et al.  Nonlinear programming via an exact penalty function: Global analysis , 1982, Math. Program..

[15]  D. Gabay Reduced quasi-Newton methods with feasibility improvement for nonlinearly constrained optimization , 1982 .

[16]  Andrew R. Conn,et al.  Nonlinear programming via an exact penalty function: Asymptotic analysis , 1982, Math. Program..

[17]  D. Gabay Minimizing a differentiable function over a differential manifold , 1982 .

[18]  John E. Dennis,et al.  Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.

[19]  T. Coleman,et al.  On the Local Convergence of a Quasi-Newton Method for the Nonlinear Programming Problem , 1984 .

[20]  J. Stoer Principles of Sequential Quadratic Programming Methods for Solving Nonlinear Programs , 1985 .

[21]  R. Fletcher Practical Methods of Optimization , 1988 .

[22]  Jean Charles Gilbert Mise à jour de la métrique dans les méthodes de quasi-Newton réduites en optimisation avec contraintes d'égalité , 1988 .

[23]  R. Tapia On secant updates for use in general constrained optimization , 1988 .

[24]  Jorge Nocedal,et al.  On the limited memory BFGS method for large scale optimization , 1989, Math. Program..

[25]  Claude Lemaréchal,et al.  Some numerical experiments with variable-storage quasi-Newton algorithms , 1989, Math. Program..

[26]  Jean Charles Gilbert Maintaining the positive definiteness of the matrices in reduced secant methods for equality constrained optimization , 1991, Math. Program..

[27]  Jorge Nocedal,et al.  An analysis of reduced Hessian methods for constrained optimization , 1991, Math. Program..

[28]  Thomas F. Coleman,et al.  Partitioned quasi-Newton methods for nonlinear equality constrained optimization , 1992, Math. Program..

[29]  Yin Zhang,et al.  An SQP Augmented Lagrangian BFGS Algorithm for Constrained Optimization , 1992, SIAM J. Optim..

[30]  J. Hiriart-Urruty,et al.  Convex analysis and minimization algorithms , 1993 .

[31]  Jean Charles Gilbert Superlinear convergence of a reduced BFGS method with piecewise line-search and update criterion , 1993 .

[32]  David J. Thuente,et al.  Line search algorithms with guaranteed sufficient decrease , 1994, TOMS.

[33]  N. Lord,et al.  Differentiable Manifolds; A First Course , 1996, The Mathematical Gazette.

[34]  Jean Charles Gilbert Piecewise line-search techniques for constrained minimization by quasi-Newton algorithms , 1998 .

[35]  Ernst Hairer Analyse II (Calcul Différentiel et Equations Différentielles) , 1999 .