Hollow “graphene” microtubes using polyacrylonitrile nanofiber template and potential applications of field emission

[1]  Yi Luo,et al.  Unraveling the formation mechanism of graphitic nitrogen-doping in thermally treated graphene with ammonia , 2016, Scientific Reports.

[2]  W. Milne,et al.  Field emission characteristics of contact printed graphene fins. , 2014, Small.

[3]  M. Prato,et al.  Rolling up a graphene sheet. , 2013, Chemphyschem : a European journal of chemical physics and physical chemistry.

[4]  Litong Zhang,et al.  Self-Assembly of Graphene on Carbon Nanotube Surfaces , 2013, Scientific Reports.

[5]  Lan Jiang,et al.  Graphene microtubings: controlled fabrication and site-specific functionalization. , 2012, Nano letters.

[6]  M. S. El-shall,et al.  Highly efficient electron field emission from graphene oxide sheets supported by nickel nanotip arrays. , 2012, Nano letters.

[7]  G. Flynn,et al.  Visualizing Individual Nitrogen Dopants in Monolayer Graphene , 2011, Science.

[8]  J. A. Briones-Leon,et al.  Millimeter-long carbon nanotubes: outstanding electron-emitting sources. , 2011, ACS nano.

[9]  Stefan Grimme,et al.  Effect of the damping function in dispersion corrected density functional theory , 2011, J. Comput. Chem..

[10]  N. Xu,et al.  Field electron emission characteristics and physical mechanism of individual single-layer graphene. , 2010, ACS nano.

[11]  W. Lu,et al.  Improved synthesis of graphene oxide. , 2010, ACS nano.

[12]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[13]  S. Nguyen,et al.  Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon-based materials. , 2010, Small.

[14]  T. Feng,et al.  Electron field emission from screen-printed graphene films , 2009, Nanotechnology.

[15]  H. Dai,et al.  N-Doping of Graphene Through Electrothermal Reactions with Ammonia , 2009, Science.

[16]  Feng Li,et al.  Field Emission of Single‐Layer Graphene Films Prepared by Electrophoretic Deposition , 2009 .

[17]  J. Tour,et al.  Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons , 2009, Nature.

[18]  Jun Chen,et al.  Fabrication of Vertically Aligned Single‐Crystalline Boron Nanowire Arrays and Investigation of Their Field‐Emission Behavior , 2008 .

[19]  K. Novoselov,et al.  The Raman Fingerprint of Graphene , 2006, cond-mat/0606284.

[20]  M. Dresselhaus,et al.  Electronic, thermal and mechanical properties of carbon nanotubes , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[21]  Shui-Tong Lee,et al.  Very low-field emission from aligned and opened carbon nanotube arrays , 2001 .

[22]  G. Henkelman,et al.  A climbing image nudged elastic band method for finding saddle points and minimum energy paths , 2000 .

[23]  H. Dai,et al.  Self-oriented regular arrays of carbon nanotubes and their field emission properties , 1999, Science.

[24]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[25]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[26]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .