Achieving non-contact optical thermometer via inherently Eu2+/Eu3+-activated SrAl2Si2O8 phosphors prepared in air

[1]  B. Choi,et al.  Eu3+-activated Ca3Mo0.2W0.8O6 red-emitting phosphors: A near-ultraviolet and blue light excitable platform for solid-state lighting and thermometer , 2020 .

[2]  S. H. Park,et al.  Dual-functional of non-contact thermometry and field emission displays via efficient Bi3+ → Eu3+ energy transfer in emitting-color tunable GdNbO4 phosphors , 2020 .

[3]  Hong Gao,et al.  Highly sensitive optical ratiometric thermometry by exciting Eu3+/Tb3+'s unusual absorption lines. , 2019, Physical chemistry chemical physics : PCCP.

[4]  L. Luo,et al.  Lithium ion doping triggered splendid quantum efficiency and thermal stability in Li2SrSiO4:xEu2+ phosphors for optical thermometry and high luminous efficiency white-LED , 2019, New Journal of Chemistry.

[5]  Z. Xia,et al.  Non-stoichiometry in Ca2Al2SiO7 enabling mixed-valent europium toward ratiometric temperature sensing , 2019, Science China Materials.

[6]  S. H. Park,et al.  NUV light induced visible emission in Er 3+ ‐activated NaSrLa(MoO 4 )O 3 phosphors for green LEDs and thermometer , 2019, Journal of the American Ceramic Society.

[7]  Degang Deng,et al.  Multichannel luminescence of Eu2+/Eu3+ Co-activated Ca9Mg1.5(PO4)7 phosphors for self-referencing optical thermometry , 2019, Journal of Luminescence.

[8]  Y. Huang,et al.  Multi-site occupancies of Eu2+ in Ca6BaP4O17 and their potential optical thermometric applications , 2019, Chemical Engineering Journal.

[9]  Xianju Zhou,et al.  Simultaneously tuning emission color and realizing optical thermometry via efficient Tb3+→Eu3+ energy transfer in whitlockite-type phosphate multifunctional phosphors , 2019, Journal of Alloys and Compounds.

[10]  S. H. Park,et al.  Er3+-Activated NaLaMgWO6 double perovskite phosphors and their bifunctional application in solid-state lighting and non-contact optical thermometry. , 2019, Dalton transactions.

[11]  Ping Huang,et al.  Unraveling the Electronic Structures of Neodymium in LiLuF4 Nanocrystals for Ratiometric Temperature Sensing , 2019, Advanced science.

[12]  Bo Zhang,et al.  Color-tunable visible photoluminescence of Eu:CaF2 single crystals: variations of valence state and local lattice environment of Eu ions. , 2019, Optics express.

[13]  Xinguo Zhang,et al.  A ratiometric optical thermometer with high sensitivity and superior signal discriminability based on Na3Sc2P3O12: Eu2+, Mn2+ thermochromic phosphor , 2019, Chemical Engineering Journal.

[14]  J. Yu,et al.  Energy transfer from VO43− group to Sm3+ ions in Ba3(VO4)2:3xSm3+ microparticles: A bifunctional platform for simultaneous optical thermometer and safety sign , 2018, Chemical Engineering Journal.

[15]  Hai Guo,et al.  Self-calibrated optical thermometer based on luminescence from SrLu2O4:Bi3+,Eu3+ phosphors , 2018, RSC advances.

[16]  Chongfeng Guo,et al.  Self-calibrated optical thermometer LuNbO4:Pr3+/Tb3+ based on intervalence charge transfer transitions , 2018 .

[17]  Z. Ji,et al.  A review on nanostructured glass ceramics for promising application in optical thermometry , 2018, Journal of Alloys and Compounds.

[18]  C. Duan,et al.  Enhanced 5D0 → 7F4 transition and optical thermometry of garnet type Ca3Ga2Ge3O12:Eu3+ phosphors , 2018 .

[19]  Haiquan Su,et al.  Inherently Eu2+/Eu3+ Codoped Sc2O3 Nanoparticles as High‐Performance Nanothermometers , 2018, Advanced materials.

[20]  Peng Chen,et al.  Near-ultraviolet and blue light excited Sm3+ doped Lu2MoO6 phosphor for potential solid state lighting and temperature sensing , 2018 .

[21]  J. Yu,et al.  Synthesis of Er(III)/Yb(III)-doped BiF3 upconversion nanoparticles for use in optical thermometry , 2018, Microchimica Acta.

[22]  F. Huang,et al.  Sn 2+ /Mn 2+ codoped strontium phosphate (Sr 2 P 2 O 7 ) phosphor for high temperature optical thermometry , 2018 .

[23]  H. Seo,et al.  Excitation power dependent optical temperature behaviors in Mn4+ doped oxyfluoride Na2WO2F4. , 2018, Physical chemistry chemical physics : PCCP.

[24]  Z. Ji,et al.  Novel red-emitting Sr2LaSbO6:Eu3+ phosphor with enhanced 5D0→7F4 transition for warm white light-emitting diodes , 2017 .

[25]  Daqin Chen,et al.  A new non-contact self-calibrated optical thermometer based on Ce3+ → Tb3+ → Eu3+ energy transfer process , 2017 .

[26]  Jinsheng Shi,et al.  Self‐reduction process and enhanced blue emission in SrAl2Si2O8: Eu, Tb via electron transfer from Tb3+ to Eu3+ , 2017 .

[27]  Daqin Chen,et al.  Synthesis of Mn2+:Zn2SiO4–Eu3+:Gd2O3 nanocomposites for highly sensitive optical thermometry through the synergistic luminescence from lanthanide-transition metal ions , 2017 .

[28]  H. P. Nagaswarupa,et al.  A benign approach for tailoring the photometric properties and Judd-Ofelt analysis of LaAlO3:Sm3+ nanophosphors for thermal sensor and WLED applications , 2017 .

[29]  S. H. Park,et al.  Improvement of photoluminescence properties of Eu3+ doped SrNb2O6 phosphor by charge compensation , 2017 .

[30]  Peng Du,et al.  Citric-assisted sol-gel based Er3+/Yb3+-codoped Na0.5Gd0.5MoO4: A novel highly-efficient infrared-to-visible upconversion material for optical temperature sensors and optical heaters , 2016 .

[31]  F. Huang,et al.  A Novel Optical Thermometry Strategy Based on Diverse Thermal Response from Two Intervalence Charge Transfer States , 2016 .

[32]  Xiaohong Yan,et al.  Optical temperature sensing of rare-earth ion doped phosphors , 2015 .

[33]  M. Fang,et al.  Tunable SrAl2Si2O8: Eu phosphor prepared in air via valence state-controlled means , 2015 .

[34]  Zhiyu Wang,et al.  Dual‐Emitting MOF⊃Dye Composite for Ratiometric Temperature Sensing , 2015, Advanced materials.

[35]  Jinxian Wang,et al.  Single-component and warm-white-emitting phosphor NaGd(WO4)2:Tm3+, Dy3+, Eu3+: synthesis, luminescence, energy transfer, and tunable color. , 2014, Inorganic chemistry.

[36]  C. Duan,et al.  Temperature dependent luminescence of Dy3+ doped BaYF5 nanoparticles for optical thermometry , 2014 .

[37]  C. Duan,et al.  Optical thermometry based on upconversion luminescence in Yb3+/Ho3+ co-doped NaLuF4 , 2014 .

[38]  Hongbin Liang,et al.  Temperature-sensitive fluorescence of NaRETiO4:Pr3+ (RE = Y, Gd) based on the intervalence charge transfer between Pr3+ and Ti4+ , 2014 .

[39]  S. Gupta,et al.  On the unusual photoluminescence of Eu3+ in α-Zn2P2O7: a time resolved emission spectrometric and Judd–Ofelt study , 2013 .

[40]  M. Nikolić,et al.  Y2O3:Yb,Tm and Y2O3:Yb,Ho powders for low-temperature thermometry based on up-conversion fluorescence , 2013 .

[41]  Yangyang He,et al.  Temperature Sensing and In Vivo Imaging by Molybdenum Sensitized Visible Upconversion Luminescence of Rare‐Earth Oxides , 2012, Advanced materials.

[42]  D. Patel,et al.  Local Environments Around Eu3+ and Eu2+ Ions in Dual Light‐Emitting BaSnO3:Eu Nanomaterials , 2012 .

[43]  D. Gamelin,et al.  Water-soluble dual-emitting nanocrystals for ratiometric optical thermometry. , 2011, Journal of the American Chemical Society.

[44]  Gregory S Harms,et al.  Upconverting nanoparticles for nanoscale thermometry. , 2011, Angewandte Chemie.

[45]  Francisco Sanz-Rodríguez,et al.  Temperature sensing using fluorescent nanothermometers. , 2010, ACS nano.

[46]  Zhaofeng Wang,et al.  The reduction of Eu3+ to Eu2+ in BaMgAl10O17:Eu and the photoluminescence properties of BaMgAl10O17:Eu2+ phosphor , 2009 .

[47]  Mingying Peng,et al.  The reduction of Eu3+ to Eu2+ in BaMgSiO4∶Eu prepared in air and the luminescence of BaMgSiO4∶Eu2+ phosphor , 2003 .

[48]  Mingying Peng,et al.  Study on the reduction of Eu3+→Eu2+ in Sr4Al14O25: Eu prepared in air atmosphere , 2003 .

[49]  Wei Chen,et al.  Nanoparticle luminescence thermometry , 2002 .

[50]  Q. Su,et al.  Luminescent properties of divalent samarium-doped strontium hexaborate , 1999 .

[51]  T. Arias,et al.  Iterative minimization techniques for ab initio total energy calculations: molecular dynamics and co , 1992 .

[52]  I. Tale,et al.  Recombination luminescence mechanisms in Ba3(PO4)2 , 1979 .

[53]  C. Struck,et al.  Eu+35D Resonance Quenching to the Charge‐Transfer States in Y2O2S, La2O2S, and LaOCl , 1970 .

[54]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[55]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[56]  Xinguo Zhang,et al.  Dual-emitting Ce3+, Tb3+ co-doped LaOBr phosphor: Luminescence, energy transfer and ratiometric temperature sensing , 2017 .